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Linear Volumetric Focus for Light Field Cameras
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We demonstrate that the redundant information in light field imagery allows

volumetric focus, an improvement of signal quality that maintains focus

over a controllable range of depths. To do this, we derive the frequency-

domain region of support of the light field, finding it to be the 4D hyperfan

at the intersection of a dual fan and a hypercone, and design a filter with

correspondingly shaped passband. Drawing examples from the Stanford

Light Field Archive and images captured using a commercially available

lenslet-based plenoptic camera, we demonstrate that the hyperfan outper-

forms competing methods including planar focus, fan-shaped antialiasing,

and nonlinear image and video denoising techniques. We show the hyperfan

preserves depth of field, making it a single-step all-in-focus denoising filter

suitable for general-purpose light field rendering. We include results for dif-

ferent noise types and levels, through murky water and particulate matter, in

real-world scenarios, and evaluated using a variety of metrics. We show that

the hyperfan’s performance scales with aperture count, and demonstrate the

inclusion of aliased components for high-quality rendering.
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1. INTRODUCTION

Focus has existed almost as long as photography, and is employed in
all modern cameras. Focus is used to selectively emphasize elements
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Fig. 1. (a) Conventional focus improves SNR but maintains sharpness on a

single plane; (b) in this work we demonstrate volumetric focus dramatically

improving SNR while maintaining focus over a controllable range of depths.

Code and example light fields are available online at http://marine.acfr.

usyd.edu.au/permlinks/Plenoptic. Original light field courtesy the Stanford

Computer Graphics Laboratory.

of a scene, controlling the level and shape of blur—the “bokeh”—
to yield an aesthetically pleasing result. It is easy to forget that
a key motivation for focus, and probably the original reason it
came about, is not to blur background elements but to gather more
light, shortening exposure times and increasing signal-to-noise ratio
(SNR). The side-effect of this enhanced light gathering is a narrowed
depth of field, and applications that benefit from both a large depth
of field and light gathering must strike a balance between the two.
Indeed, this trade-off can impact or even prevent imaging in low
contrast—at night, through murky water, smoke, cloud, fog, or
dust—or where exposure times are limited due to motion.

In combating low contrast, the obvious approach of increasing
illumination is not always applicable: Large scenes cannot always
be effectively lit, illumination power budgets are typically limited,
and, in the presence of scattering media, backscatter can negate
any advantage gained by increasing illumination. The alternative
approach of increasing exposure duration also finds limited success
where dynamic scenes or platforms lead to motion blur.

Interfering scene elements such as snow, rain, underwater partic-
ulate matter, and other heterogeneous occluders can further compli-
cate imaging. These are distinct from low-contrast scenarios in that
the fundamental limitation is not a lack of signal, with imaging ulti-
mately limited by sensor noise, but rather interference present within
the signal itself. Increasing illumination or sensitivity will not help
remove partial occluders; they will simply be imaged with higher
fidelity. Widening a camera’s aperture does help remove occluders,
not by virtue of gathering more light, but rather by increasing depth
selectivity to better isolate desired scene content.

The ability to better control the trade-offs associated with focus
is clearly desirable, with potential applications including mobile
robotics, autonomous driving, consumer photography, and surveil-
lance. Recent developments in computational photography have
demonstrated the potential of such an approach, with methods in
focal sweep, flutter shutter, and multiple-exposure-duration video
all allowing a camera to gather more light than would normally be
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Fig. 2. Two-plane parameterizations of light rays. Shown is the relative

two-plane parameterization. The points of intersection of a ray with two

parallel planes completely describe its position and orientation in space. By

convention, the s, t plane is closer to the camera, and the u, v plane is closer

to the scene.

possible for a given depth of field and exposure time [Nagahara et al.
2008; Raskar et al. 2006; Agrawal et al. 2009]. Quantitative anal-
yses confirm these techniques offer significant benefit in low-SNR
applications [Cossairt et al. 2012; Mitra et al. 2013].

This article employs light field imaging to break the trade-offs of
conventional imaging. We present volumetric focus, a method that
improves SNR while maintaining sharp focus over a user-selected
range of depths, rather than at a single depth as in conventional
focus; examples of conventional and volumetric focus are depicted
in Figure 1. In contrast to previous all-in-focus or extended depth-
of-field techniques, the proposed method employs a simple, linear
single-step filter to combine information from across the light field.

The remainder of this article is organized as follows: We provide
background on light field imaging and related work in Section 2
and develop the light field characteristics central to the article in
Section 4. These characteristics are exploited in Section 5 to derive
volumetric focus filters. Sections 6 and 7 show results for camera ar-
ray and lenslet-based light fields, giving quantitative and qualitative
analyses of the volumetric filter’s performance. The work concludes
with discussion and directions for future work in Section 8.

2. BACKGROUND

Whereas a conventional camera measures variations in light as a
function of direction for rays passing through a single position,
a light field (also “plenoptic”) camera encodes variations in light
as a function of both direction and position. This can be achieved
by introducing coded masks [Veeraraghavan et al. 2007] or lens
arrays [Ng et al. 2005] into the optical path of a camera, or by
constructing a grid of conventional cameras [Wilburn et al. 2005]
depicted as boxes in Figure 2. The resulting images enable a range
of new capabilities, including featureless or linear methods for tra-
ditionally nonlinear, iterative, or nondeterministic tasks including
depth-selective filtering, distractor isolation, and visual odome-
try [Ng et al. 2005; Dansereau and Bruton 2007; Dansereau and
Williams 2011; Yang et al. 2007; Dansereau et al. 2011].

Light field imaging offers important benefits in challenging imag-
ing conditions, most notably in breaking the conventional trade-off
between depth of field and SNR. Both arrays of cameras and lenslet-
based cameras gather significantly more light for a given depth of
field than conventional cameras [Ng et al. 2005]. Specifically, in
both an array of N × N cameras and a lenslet-based plenoptic

camera with N × N pixels per lenslet, the increase in light gath-
ering for a given depth of field is N 2—a huge improvement. In
both cases, the effective baseline also increases, increasing depth
selectivity and the ability to reject occluders.

However, the redundant light that plenoptic cameras capture must
be combined computationally in order to yield the maximum benefit.
Combining light field information to improve SNR is the main focus
of this article and it is not without precedent. It is well established
that a light field contains sufficient information to allow post-capture
focus through appropriate filtering [Isaksen et al. 2000; Ng 2005].
This virtual focus demonstrates similar properties to conventional
focus: It combines light coming from different directions to increase
SNR and simultaneously offers depth selectivity, blurring out scene
elements that fall outside a plane of focus. Because plenoptic focus
can be tuned after the imagery has been captured, there is no need
to decide ahead of time on a single focal setting.

In this work we generalize planar to volumetric focus. As in pla-
nar focus, volumetric focus combines light coming from different
directions to increase SNR. Unlike conventional focus, volumetric
focus keeps a range of depths in focus, blurring scene elements out-
side the focal volume as in Figure 1. The filter we present is useful
where planar focus is useful: in ameliorating low contrast due to
lack of illumination, murky water or other attenuating media, and in
seeing around heterogeneous occluders. Volumetric focus can sim-
plify system design by offering different trade-offs in depth of field
and SNR than are possible with planar focus. This is particularly
important where large baselines are present: An array of cameras
sharply focused at a single depth will display a high SNR, but over
a very narrow depth of field. Many applications deal with nonplanar
scenes, and so the ability to put a volume in focus becomes highly
desirable. Volumetric focus also simplifies applications in which a
variable focal plane, adjusted to match the scene content, can be re-
placed with a fixed focal volume designed to encompass all typical
scene depths.

Throughout this article we employ the relative two-plane param-
eterization depicted in Figure 2, in which light rays are described by
their points of intersection with two parallel planes: an s, t plane, by
convention closest to the camera, and a u, v plane at distance D, by
convention closer to the scene. The continuous-domain light field
signal L(s, t, u, v) describes all light rays passing through the s, t
and u, v planes. In the case of a light field camera array, it is often
most convenient to place the camera apertures within and aligned
with the s, t plane, as depicted in Figure 2. One of the advantages
of the relative two-plane parameterization is that if one selects D to
equal the focal length of the cameras in the array, u and v then co-
incide with physical coordinates on the image sensor. One can then
think of the s, t plane as selecting a camera, and u, v as selecting a
pixel.

3. RELATED WORK

Denoising of conventional imagery is a rich and active area of re-
search, and a good review is provided by Buades et al. [2005]. See
also Guleryuz [2007] for modern overcomplete dictionary develop-
ments, and Aharon et al. [2006] and Elad and Aharon [2006] for a
singular value decomposition generalization of K-means for learn-
ing dictionaries directly from noisy imagery. Because we are deal-
ing with high-dimensional imagery, video denoising is also relevant,
including recent advances in block matching and filtering [Dabov
et al. 2007].

Alternative approaches to low-light and contrast-limited imaging
have appeared in the realm of computational photography. Levoy
et al. [2004] demonstrate an active illumination generalization of
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confocal imaging, allowing effective imaging through turbid media.
A converse of this structured light approach, in which the position
of the camera is varied rather than that of the illumination source,
yields the light-field-based method explored in this article. O’Toole
et al. [2012] augment the structured light method by including a vari-
able camera mask, allowing a range of light transport phenomena to
be investigated through completely optical processes. Relevant ca-
pabilities of this system are depth selectivity and the improvement
of contrast through turbid media.

Iterative variational Bayesian frameworks have been explored
for combining light measured across many apertures [Bishop and
Favaro 2012; Goldluecke and Wanner 2013]. Our work differs sig-
nificantly in its complexity; we present a single, noniterative linear
filter as a means of combining images from across the light field,
offering a simpler and potentially more robust solution. Yu et al.
[2013] tackle denoising of light fields measured using reflective
spheres, employing a robust image registration technique. Again,
our work differs in its level of complexity by offering a linear,
noniterative solution.

Several techniques for enhancing a camera’s depth of field or light
gathering ability have emerged from the domain of computational
photography. These include focal sweep, flutter shutter, and motion
blur mitigation from multiple-exposure-time video [Nagahara et al.
2008; Raskar et al. 2006; Agrawal et al. 2009]. Because of the fun-
damental differences in approach, these offer significantly different
performance trade-offs to the method we present.

The key principle underlying much of this article is ultimately
parallax motion and its consequences in the 4D frequency domain.
Parallax motion is a common thread throughout light field research
and indeed much of computer vision, including stereo and multiple-
camera geometry and structure from motion. As early as 1987 the
manifestation of parallax in 2D light field slices was being ex-
plored [Bolles et al. 1987]. That work examines the characteristic
straight lines arising in “epipolar images”, 2D slices of the light
field in spatial and angular dimensions. These straight lines were
the basis for depth estimation from lenslet-based plenoptic cameras
in Adelson and Wang [2002], and similar ideas were later elaborated
in general 4D light fields [Dansereau and Bruton 2004].

Similar developments often arise in disparate fields, and it is
interesting that evolution itself may have stumbled upon depth es-
timation from parallax motion in lenticular arrays, in the form of
insect compound eyes [Bitsakos and Fermüller 2006]. A year be-
fore that work was published, Neumann et al. [2005] proposed an
artificial compound eye sensor for egomotion estimation, based on a
spatio-temporal generalization of parallax motion. Spatial-domain
light field manifolds are also discussed in more detail in Berent and
Dragotti [2007] and Gu et al. [1997].

Exploiting parallax motion in light fields is not limited to depth
estimation, and indeed one of its first applications was in filtering.
Levoy and Hanrahan [1996] included a discussion of spatial-domain
antialiasing filters, employing the properties of the light field to
improve rendering quality. In this article we show that parallax
motion has consequences in the frequency domain, namely that
the frequency-domain region of support (ROS) of a light field is
a fan-like shape which we call a hyperfan. The frequency content
of light fields has been the subject of extensive research [Chai
et al. 2000; Chan and Shum 2000; Durand et al. 2005; Freeman
et al. 2009], with the frequency plane being a commonly identified
feature. To the authors’ knowledge, the first frequency-planar light
field filter was proposed by Isaksen et al. [2000], and the same
idea has since reappeared with minor variations, including efficient
recursive and frequency-slicing approaches for carrying out light
field focus [Dansereau and Bruton 2003; Ng 2005].

Volumetric focus is a generalization of planar focus, and an ex-
ample is discussed in Dansereau and Bruton [2007]. That work pro-
poses the dual fan as the frequency-domain ROS of a light field, and
employs multiple-branch filter banks to approximate the dual-fan
shape. Earlier work had proposed a two-branch filter bank to approx-
imate a fan shape, under different terminology [Stewart et al. 2003].
In the present work it is shown that the dual fan is a projection of
the much more selective frequency hyperfan underlying light fields.

Levin et al. [2009] and Levin and Durand [2010] discuss the light
field’s frequency-domain ROS in terms of a dimensionality gap, the
idea that light field images lie on a 3D focal manifold in 4D fre-
quency space. In Levin et al. [2009] the focal manifold is used to
analyze a novel, physical lens design that displays extended depth
of field by virtue of collecting light over many discrete focal depths.
Levin and Durand [2010] employ the focal manifold in derivations
of 2D deconvolution kernels for rendering from focal stacks and
sparse collections of viewpoints. That same work discusses alias-
ing in terms of the focal manifold, and concludes by rendering
wide depth-of-field images from a stack of more narrowly focused
antialiased images produced using methods from Lumsdaine and
Georgiev [2009].

Our work differs in specifically identifying the frequency-domain
ROS of the light field as the 4D hyperfan shape at the intersection of
a hypercone and a dual fan. We effect tunable, postcapture volumet-
ric focus by surrounding the frequency hyperfan with a novel, linear,
single-step and irreducibly 4D hyperfan filter. We demonstrate the
frequency hyperfan to show important theoretical and practical per-
formance gains over previously described filters in low-contrast,
wide depth-of-field scenarios.

This article builds on Dansereau et al. [2013a], introducing
spatial-domain and hybrid implementations, addressing aliased
passband components, discussing the scaling of selectivity with
sample count, and providing more extensive results. A more de-
tailed treatment can be found in Dansereau [2014].

4. THE MANY FACES OF PARALLAX

In this section we explore the spatial- and frequency- domain be-
haviors of light fields, starting with parallax motion and concluding
with a set of rules that, under a few assumptions, all light fields
follow. In subsequent sections we design linear filters which exploit
these rules to carry out volumetric focus.

4.1 Parallax in 2D

We begin by investigating the case of a single point P =
[Px, Py, Pz] in an arbitrary scene, in 2D. The rays emanating from
P can be described using a simple set of rules. As depicted in
Figure 3(a), if one begins with a ray that intersects P (highlighted),
then translates that ray’s point of intersection along s, its point of
intersection along u must follow at a proportional rate in order for
the ray to maintain its intersection with P . In other words, the rays
emanating from P follow a linear relationship in s and u. This is
the light field manifestation of parallax motion [Bolles et al. 1987;
Dansereau and Bruton 2003].

We can write the linear relationship relating s and u, and its
generalization in the vertical dimensions t and v, as

[

u
v

]

=
(

D

Pz

)[

Px − s
Py − t

]

, (1)

where D is the plane separation in the two-plane parameterization as
depicted in Figure 2. We can visualize this relationship as shown in
Figure 3(b). We label the line supporting P’s rays λ. Recall that we
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Fig. 3. Parallax in the light field: the point-plane correspondence. (a) For

all rays originating at a point P in space, u varies linearly with s, and by

extension v with t ; (b) this describes a line λ in the 2D s, u plane and, by

extension, in the t, v plane.

are operating under the relative two-plane parameterization; under
the absolute two-plane parameterization a similar linear relationship
will hold, but with different slopes and offsets. Notice how the slope
of the line relating s and u is determined entirely by the depth of
P in the scene. An immediate consequence of this is that a scene
containing many points at the same depth will yield parallel lines
in s, u, and in t, v.

Thus far we have discussed only the support of P’s rays, and said
nothing of their values. In a totally unconstrained scene we can say
very little. P may lie on a mirrored surface, and there can be arbitrar-
ily many occlusions within the scene, in which case the values along
λ can be almost anything. Thankfully, much of the light measured
in natural scenes is diffusely reflected. Trees, grass, dirt, rocks, kelp,
coral, sand. . . just about everything occurring naturally is primar-
ily diffuse except for water, as confirmed in studies measuring the
bidirectional reflectance distribution functions (BRDFs) of natural
materials [Dana et al. 1999]. Similarly, the energy in occlusions will
generally be minimal given the limited baseline of our cameras and
following arguments stemming from scene statistics [Geisler 2008;
Ruderman 1997].

As such, we adopt the assumptions of a diffuse, Lambertian
scene [Lambert 1760] with no occlusion, allowing us to say that the
line λ corresponding to each point P in the scene is constant valued.
Considering the case of multiple points, we can see that the light field
slices must consist of multiple, constant-valued lines. Because the
orientation of a line depends only on the depth of its corresponding
point, a scene consisting of surface elements at a single depth will
yield light field slices of parallel, constant-valued lines.

We now consider the implications of these observations in the
frequency domain. The 2D Fourier transform of a set of parallel,
constant-valued lines is an orthogonal line that passes through the
origin. This fact can be derived mathematically [Dansereau 2003],
or understood intuitively by realizing that a function which is con-
stant valued in a certain direction will exist as a frequency-domain
delta function along that direction.

More formally, the frequency-domain ROS of the Lambertian
surface at depth Pz can be described as

Ωs/Ωu = Ωt/Ωv = D/Pz, (2)

where Ω is the continuous-domain light field frequency space.
Generalizing for a scene containing a range of depths is possi-

ble through superposition: A scene comprising surface elements at

Fig. 4. The relationship between Lambertian scenes and their frequency-

domain regions of support: (a) Points at a single depth, shown in s and u,

correspond to (b) a 2D frequency-domain line; (c) points over a range of

depths correspond to (d) a 2D frequency-domain fan.

many depths will exist as a superposition of lines in the 2D light
field. This can be seen by allowing Pz in (2) to sweep through a
range of depths corresponding to the scene extents,

ZMIN < Pz < ZMAX. (3)

The resulting shape is a 2D fan [Chai et al. 2000]. The relationships
between Lambertian scenes and their frequency-domain regions of
support are depicted in 2D in Figure 4.

Recall that we have ignored the effects of occlusion and specular
reflection. The curious reader is referred to Durand et al. [2005]
for a discussion of specularly reflective surfaces and occlusions in
the context of the light field, Maeno et al. [2013] for scenes with
refractive objects, Ji et al. [2013] for an excellent treatment of the
more complex case of refractive gas flows, and Raskar et al. [2008]
for situations where the camera itself contributes complex lens flare
effects.

4.2 Generalizing to 4D

We now generalize the observations made in 2D in the previous
section to the 4D light field. We begin with the relationship
depicted in Figure 3, that is expressed as a system of two linear
equations (1). In 4D, each of these linear equations describes a
hyperplane [Dansereau 2003], because it imposes a single linear
constraint on the four dimensions. The two hyperplanes described
by (1) are depicted as 2D slices of 2D images in Figures 5(a) and
(b). This visualization of the 4D light field as an array of slices is
akin to tiling the images captured by the cameras of an array. In
this case the light field is sliced as an array of t, v slices arranged
according to their s, u positions. Notice the compact convention
we follow in labeling these axes.

Applying both Eqs. (1) simultaneously results in an intersection
of the two hyperplanes. The situation is closely analogous to the
intersection, in 3D, of two planes: Each plane is described by a
single linear equation, and the combination of the two equations is
the line where the two planes intersect. In the same way, our two
linear equations describe two hyperplanes that intersect to form a
plane in 4D space, as depicted in Figure 5(c). The consequence of
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Fig. 5. Two 4D hyperplanes (a) and (b) intersect to form a plane (c).

these observations is that a point in space, P , corresponds to a plane
in the 4D light field.

In 2D, we saw that a Lambertian surface at a single depth has a lin-
ear 2D frequency-domain ROS. Generalizing this to 4D follows ex-
actly the same procedure as before. Each 2D linear ROS corresponds
to a 4D frequency hyperplane, and the simultaneous application of
the two hyperplanes intersects to form a 4D plane. The result is that
a Lambertian surface at a single depth has a 4D frequency-planar
ROS. Figure 6(a) depicts three points at a single depth in a scene,
and (b) depicts the corresponding 4D frequency-domain ROS.

Generalizing to multiple depths must be performed in 4D.
Simply applying the fan-shaped ROS depicted in Figure 4(d) in
both s, u and t, v dimensions yields a dual-fan volume [Dansereau
and Bruton 2007], while the true shape of the light field’s ROS, we
shall see, is a 3D manifold embedded in 4D space. This has strong
parallels to the 3D example of attempting to describe the surface
of a cone as the intersection of a circle and two triangles, yielding
a family of shapes that are not generally cones, and most of which
are volumes, not surfaces.

We begin instead from spatial points at different depths as visu-
alized in 4D. Figure 6(c) depicts three points at different depths,
and their corresponding ROS is depicted in (d). The latter is the
superposition of planes like the one in (b) at different orientations.
We denote this new manifold the hyperfan because it is constructed
by sweeping a plane through a range of angles, akin to sweeping a
line through 2D space to form a fan.

A more mathematically driven approach considers (2) and (3)
together, resulting in three constraints describing the frequency-
domain ROS of the light field:

mMIN < Ωs/Ωu < mMAX, (4)

mMIN < Ωt/Ωv < mMAX, (5)

Ωs/Ωu = Ωt/Ωv . (6)

Fig. 6. Deriving the frequency-domain ROS of the light field in 4D: Points

at a single depth (a) have a frequency-planar ROS (b), while points over a

range of depths (c) have an ROS that is a superposition of planes at different

orientations (d). We denote this sweep of planes a hyperfan.

Fig. 7. Decomposing the hyperfan into (a) the 4D frequency hypercone

(6), which constrains slopes in two pairs of dimensions, and (b) the dual fan

(4), (5), shown in red. The shape at their intersection, shown in white in (b),

is the hyperfan.

The first two constraints, (4) and (5), describe the dual
fan [Dansereau and Bruton 2007]. We shall demonstrate in the fol-
lowing section that the third constraint (6) describes a hypercone.
The hypercone is depicted on its own in Figure 7(a), and in 7(b)
the dual fan is depicted in red while the intersection of the two, the
hyperfan, is shown in white.

The hypercone restricts two pairs of slopes to be equal in the
frequency domain. The physical interpretation of this constraint
is that an object’s apparent motion in the horizontal light field
dimensions s and u should equal its apparent motion in the vertical
directions t and v. Recall that the slope of the line λ supporting a
point depends on the depth of the point in the scene, Pz. It makes

ACM Transactions on Graphics, Vol. 34, No. 2, Article 15, Publication date: February 2015.



15:6 • D. G. Dansereau et al.

sense that, regardless of the value of this slope, it should be equal in
horizontal and vertical directions. Noise will not in general follow
this rule, and so the hypercone shape gives us a high degree of
selectivity against noise.

The dual fan imposes depth limits on the scene by constraining
the range of valid slopes. In the following sections we will construct
a volumetric focus filter by combining the depth selectivity of the
dual fan and the noise rejection of the hypercone.

4.3 Hyperfans and Hypercones

To see why (6) describes a hypercone, we begin with the standard
form

R2
s + R2

u − R2
t − R2

v = 0, (7)

which describes a 4D saddle or hyperbolic cone—this differs from
the 4D spherical cone in the sign of the third term. To show equiva-
lence with (6), we transform the coordinate axes by applying rota-
tions of -π/4 in the Ωs, Ωv and Ωt ,Ωu planes, yielding

⎡

⎢

⎣

Rs

Rt

Ru

Rv

⎤

⎥

⎦
=

1
√

2

⎡

⎢

⎣

Ωs + Ωv

Ωt + Ωu

Ωt − Ωu

Ωs − Ωv

⎤

⎥

⎦
. (8)

Substituting the rotated coordinates into (7) and simplifying yields
the form shown in (6), thus the two forms are rotated views of the
same shape. The rotated form of the hypercone (7) is depicted in
Figure 8(a), alongside some other rotations of the same shape.

We have made much in this article of the distinction between the
dual fan and the hyperfan. As we shall see, the difference made
by treating the hyperfan as an inseparable 4D shape is significant,
especially in regard to improving SNR in low-contrast applications.

5. THE 4D HYPERFAN FILTER

Having described a frequency-domain ROS for the light field, we
proceed to design a linear filter that selectively passes it. We begin
by implementing the filter in the frequency domain, computing the
input’s discrete Fourier transform (DFT), multiplying by the filter’s
magnitude response in the frequency domain, and then computing
the inverse DFT. We explore spatial-domain implementation in the
following section. Note that we describe the filter in terms of the
continuous-domain frequency space Ω , and that practical imple-
mentation requires appropriate adjustment of filter parameters to
reflect the sample rate of the discrete light field [Dansereau 2003].

Because the frequency hyperfan lies at the intersection of a dual
fan and a hypercone as depicted in Figure 7, one way forward is
to describe each of these passbands and take their product. As we
proceed we will evaluate the theoretical selectivity of each passband
as the fractional 4D Nyquist volume that it passes, with smaller
fractions corresponding to higher selectivity.

Starting with the dual-fan passband, we note that this is itself the
product of two 2D fan filters [Dansereau and Bruton 2007]

HDF(Ω) = H 2D

FAN
(Ωs, Ωu, θ1, θ2) H 2D

FAN
(Ωt , Ωv, θ1, θ2), (9)

where each 2D fan is implemented by passing all points within the
prescribed angular range θ1 to θ2. The 2D fan filter and the process of
selecting θ values for a desired depth range are described in Ansari
[1987] and Dansereau and Bruton [2007].

The fractional 2D area passed by each 2D fan has a lower bound
αDF determined by the range [θ1, θ2]. We apply Gaussian smoothing
to reduce ringing artifacts, surrounding the fan by a tunable band-
width and increasing the passband area by βDF. Because the same

Fig. 8. Visualizing the 4D hypercone does not come naturally but, by

inspecting tilings under a variety of rotations, we can construct an intuition

for its nature. (a) When rotated as in (6) circles are revealed which grow

with distance from the center, highlighting the shape’s cone-like nature;

(b) this rotation elicits the contour lines of a saddle shape; (c)–(f) further

reveal the complex beauty of this shape, at turns eliciting circles, spirals,

saddles, and crosses.

selectivity is applied in Ωs, Ωu and in Ωt , Ωv , the fractional volume
passed by the 4D dual fan is given by the square

VDF = (αDF + βDF)2. (10)

The ideal hypercone (6) is a 3D manifold, not a 4D volume, and
so practical implementation requires surrounding the hypercone by
a bandwidth βHC. We propose the filter with magnitude response

HHC(Ω) = exp

(

−
[

(ΩsΩv − ΩtΩu)

β
2

HC/
√

2 ln 2

]2
)

, (11)

where βHC is the 3-dB bandwidth measured as the radius of the
hypercone at the origin; this is the radius of the cone in the rotated
Rs, Ru and Rt , Rv planes. The magnitude of the numerator of the
exponential increases with distance from the ideal hypercone shape,
and so the filter rolls off in a Gaussian-like manner from the ideal
passband. Note that the filter offers no selectivity near the origin, but
this is consistent given that the underlying constraint (6) provides
no information to do so.

For analysis we begin by ignoring the Gaussian rolloff, approx-
imating the hypercone filter as having constant thickness related
to the 3-dB bandwidth βHC through a constant factor κ . Examining
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Figure 7(a), this implies every Ωt , Ωv slice, with the exception of
the origin, will pass a constant fraction of its area. Including the
effect of the Gaussian rolloff increases the total admitted volume
by another constant factor which we absorb into κ , for a fractional
volume passed by the hypercone, given by

VHC = κβHC. (12)

The hyperfan filter is simply the product of the hypercone and
dual fan

HHF = HHCHDF. (13)

Referring to Figure 7(b), we notice that every nonzero Ωt , Ωv slice
of the hyperfan will pass a mean area of κβHC, and from the dual
fan αDF + βDF describes the ratio of nonzero slices. The fractional
volume passed by the hyperfan filter is therefore the product

VHF = κβHC(αDF + βDF). (14)

Notice the minimum volume passed by the dual fan is α2
DF

, while
the minimum for the hyperfan is zero, that is, the hyperfan offers
direct control, via βHC, of the total signal energy passed, and there-
fore presents significantly greater selectivity than the equivalent
dual-fan filter. Note also that both the dual-fan and hyperfan fil-
ters degenerate gracefully to frequency-planar filters as their depth
ranges approach zero.

5.1 Scaling Selectivity

Here we examine the change in filter selectivity as the number
of light field samples increases. The trivial example of a planar
filter focused at a single depth Pz = D has a maximally selective
passband given by the plane ωs = ωt = 0 [Ng 2005]. In a light field
having N = [Ns, Nt , Nu, Nv] samples, this yields Nu ×Nv nonzero
frequency-domain passband entries, and so the selectivity of this
filter can be written as NuNv/(NsNtNuNv) = 1/(NsNt ). Increasing
the number of samples in both s and t by a factor of M results in an
increase in selectivity of M2 [Ng et al. 2005].

Extending this approach to the hypercone, we note that its pass-
band grows with all dimensions. Because each 2D slice of the
light field contains a 1D line, the selectivity can be written as√

NsNtNuNv/(NsNtNuNv) = 1/
√

NsNt . The square root
√

NsNt

reflects the mean area covered within each 2D slice. Increasing the
number of samples in both s and t by a factor of M now results in
an increase in selectivity of M , rather than M2, for the planar filter.

The hyperfan filter narrows the hypercone to a tuneable range
of depths. At one extreme, it presents very little depth selectivity,
resulting in a filter that behaves much like the hypercone, and at
the other extreme it focuses on a very narrow range of depths,
yielding a behavior similar to the planar filter. In most cases, the
hyperfan occupies the space in between, offering selectivity between
1/

√
NsNt and 1/(NsNt ).

The preceding discussion assumes an increase in sample count
by adding additional spatial samples at the same sample rate, for
example, when growing a camera array without changing the camera
spacing. If one instead increases the sample rate by packing cameras
more tightly into the same space, or by increasing the number of
pixels per lenslet in a lenslet-based camera, an additional effect
must be considered: Under these conditions, the angle subtended
by the hyperfan decreases for a given depth of field. This is a
consequence of frequency scaling in ωs and ωt , and allows a higher
selectivity because the narrower fan more closely resembles the
planar case. Conversely, if the sample rate in u and v is increased,
the hyperfan angles must be widened for a given depth of field,
reducing selectivity.

As a concrete example, for a 4 × 4 camera array a planar filter
has a maximum selectivity of 1/(NsNt ) = 1/16, a hypercone fil-
ter 1/

√
(NsNt ) = 1/4, and a hyperfan filter varies between these

extents as a function of the selected depth of field and the u, v
resolution of the cameras.

5.2 Including Aliased Components

Arrays of cameras have discontinuous sampling patterns in the s, t
plane due to gaps between apertures. As in the case of resampling
a 2D image at discrete points, this yields aliasing. However, unlike
the example of resampling an image, we do not have the possibility
of applying an antialiasing filter prior to the sampling operation, and
camera array light fields consequently feature aliasing in the s and t
dimensions. This aliasing varies with depth and is most pronounced
in those elements forming the greatest slopes in s, u and t, v.

Aliased components are sometimes desirable; indeed, u, v slices
of camera array light fields generally contain important edge detail
that is aliased in s, t . Because they occur in a predictable manner,
it is possible to extend our definition for the light field’s ROS, and
our filters’ passbands, to include these aliased components. In the
Results section we demonstrate this approach passes desired edge
detail that would otherwise be destroyed. An evident drawback
of including aliased components in this manner is a decrease in
selectivity.

A simple way to incorporate aliased components into a filter
is to construct a magnitude response H over an extended domain
that incorporates an integer multiple of the desired domain size in
ωs, ωt . Such an extended magnitude response is depicted in 2D
in Figure 9(a), for which the domain in ωs is extended to include
two additional bands. The magnitude response is then collapsed to
the desired size by taking the maximum value over the bands, as
depicted in Figure 9(b). Extension of this method to 4D is straight-
forward.

5.3 Memory and Complexity

If we implement the hyperfan filter in the frequency domain, the
filtering process is one of applying a discrete Fourier transform,
its inverse, and a per-sample complex multiplication. Computation
time for an N -sample light field is therefore constant and of com-
plexity O(N log N ) when using the fast Fourier transform (FFT).

We operate on the three color channels separately, and so the
memory requirement is for a single color channel at a time. Two
buffers are required beyond the input light field buffer: the filter
magnitude buffer, and a complex buffer to contain the DFT. The
input light field comprises 8-bit integers, but for simplicity our
implementation operates on single- or double-precision floats. For
a color light field of N samples total, our total additional memory
requirement, for double precision, is

M = (8 + 16)N/3 = 8N. (15)

In practical terms, the 128 × 128 × 17 × 17 light fields shown in
the Results section occupy approximately N = 14MBytes. Filtering
required an 8N/3 = 38MByte double-precision buffer to hold the
filter’s magnitude response, and a 16N/3 = 76MByte complex
double-precison buffer to hold the DFT of the input, for a total of
8N = 114MBytes. The single-precision implementation requires
half the memory.

For the full-resolution Stanford Archive light fields, for example,
the 1024×1024×17×17-sample Tarot light fields, the input buffer
itself occupies 909MBytes, and the additional memory require-
ments associated with a double-precision filter are 7272MBytes.
Most modern computers have sufficient memory to support such an
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Fig. 9. Including aliased components in the filter passband: (a) The mag-

nitude response is extended over two additional bands as delineated by the

red lines and (b) reduced to the desired size by taking the maximum value

over the bands.

operation, but in lightweight mobile applications a more memory-
efficient spatial-domain implementation may be desirable.

5.4 Spatial-Domain Implementation

For very large light fields, for example, the full-resolution versions
of the Stanford Archive light fields, directly computing the full 4D
DFT may be prohibitively memory intensive on smaller systems.
For this reason, a spatial-domain filter implementation may be de-
sirable. By constructing a spatial-domain finite impulse response
(FIR) filter with impulse response h(i, j, k, l), we can compute the
output light field a single pixel at a time. The key advantage of this
is lower memory utilization: The output buffer need not be the full
light field size if only a subset of the output is needed. This would be
the case, for example, when only a 2D subset of the output light field
is required. Furthermore, the filter buffer—in this case the impulse
response h—will not in general be as large a structure as the full
light field L. The total memory utilization of a spatial implemen-
tation will therefore be much lower than for a frequency-domain
implementation.

As a concrete example, for the 1024 × 1024 × 17 × 17-sample
3-channel Tarot light fields, rendering a single 2D output image
requires only a 1024 × 1024 × 3-sample output buffer, plus a buffer
to store the impulse response h, which, as we shall show, can be
quite modest, between 1 and 16MBytes. As such, the total memory
requirement for the spatial implementation is 20MBytes or lower,
a significant improvement over the 7272MBytes required by the
DFT-based implementation.

Where spatial implementation suffers is in processing time1.
Convolution over millions of samples is much more complex than
Fourier-based multiplicative filtering. If, however, only a 2D output
slice is required, the spatial convolution method can outpace the
frequency-domain implementation because the latter treats the en-
tire signal during the DFT, while the former can focus on those parts
of the light field required for the 2D output. The filter appropriate
to a given application will therefore depend on the nature of the
desired output, the size of the input, and memory availability.

1This observation applies mostly to general-purpose computing. Though

the total operation count may be higher, the highly parallel nature of spa-

tial implementations can make them better suited to parallel architectures,

leading to significantly faster runtimes on specialized hardware such as

graphics processing units (GPUs), field programmable gate arrays (FPGAs)

and application-specific integrated circuits (ASICs).

Fig. 10. A typical hyperfan filter impulse response. This example is for a

9×9×13×13 filter passing a range of slopes between 0 and 1. The overall

shape resembles a superposition of planar filters, but with the inclusion of

orthogonal highpass components that appear as ringing.

Fig. 11. The maximum magnitude per frequency component over the first

six Stanford light fields, showing a characteristic hyperfan shape. Compare

with Figure 7(b).

A key factor allowing us to constrain the size of the impulse
response h is the range of parallax motion typical of real-world
light fields. Apparent motion is usually restricted to a small fraction
of the total u, v plane, for the simple reason that it is impractical to
design a camera otherwise. Even arrays of cameras with relatively
large baselines are seldom designed to display more apparent motion
than a fraction of the u, v plane, as so doing would yield excessive
aliasing.

The size of the impulse response required for a given volumetric
focus task is directly related to the slopes that it must support.
If the desired depth range projects at most to an apparent motion
of 10 pixels, then the resulting impulse response will not need to
be more than 10 pixels wide in u and v. In general we assume
that the whole s, t range is to be covered, as so doing maximizes
selectivity, and we select the impulse response’s size in u and v
to conservatively include the maximum apparent motion we might
want to include in the passband.

Having chosen a size for the impulse response, we proceed to
build the appropriately sized hyperfan in the frequency domain as
in the frequency-domain implementation, then take its inverse DFT.
To avoid windowing artifacts, we pad the frequency-domain shape
to a larger size; for the Stanford light fields, we pad to a hypercube
of size 32 or 64 samples in each dimension.
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Fig. 12. Optimal bandwidth shifting with (a) noise level and (b) aperture count.

A typical impulse response h is shown in Figure 10. Hyper-
fan impulse responses typically have many samples with very low
magnitudes. As such, a simple optimization discards low-magnitude
samples, effectively speeding convolution. The number of samples
to retain in the impulse response can be exposed as a parameter of
the filter, and we will show in the Results section that less than 5%
of the samples are typically required for high-quality results.

5.5 Hybrid Implementations

We have seen that the frequency-domain implementation is mem-
ory intensive but fast, while the spatial-domain method employs
less memory at the cost of slower performance. Overlap-add
and overlap-save methods are a well-established means of bal-
ancing memory utilization and speed [Rabiner and Gold 1975].
As an example, for the 1024 × 1024 × 17 × 17-sample three-
channel Tarot light fields, the FFT can be applied to blocks of
size 32 × 32 × 128 × 128, with results saved into a strip of size
17×17×128×1056×3 that cycles back onto the input buffer once
a region of the input is no longer needed. The additional memory
requirement over the input buffer, including the 32×32×128×128
magnitude response, is 603MBytes for single-precision buffers.
This is again a significant savings over the DFT-based implementa-
tion, but less so than for the purely spatial-domain implementation.
The speed of this method lies between the frequency- and spatial-
domain methods.

In the experiments that follow, we demonstrate spatial-, hybrid-
and frequency-domain implementations. For smaller light fields
such as those captured by the Lytro, we employ the frequency-
domain implementation as it is practical and efficient. Downsam-
pled versions of the Stanford light fields are also processed in this
manner. For larger light fields such as full-sized Stanford light fields,
the memory requirements of the frequency-domain implementation
made it less desirable, and so the more memory-efficient spatial-
domain and hybrid implementations are employed; note that these
two methods produce practically identical output.

6. EXPERIMENTS: STANFORD LIGHT FIELDS

The Stanford Light Field Archive2 is a publicly accessible database
suitable for evaluating light field filtering techniques. The 12 light
fields we utilize, listed in the legend of Figure 17, all contain 17×17

2http://lightfield.stanford.edu/.

aperture positions in s, t . Aperture positions are close enough
to an ideal grid that ignoring the deviation results in negligible
degradation to output quality. Each image in s, t is rectified in u, v,
and the light fields are in the two-plane parameterization. Light field
geometry varies across the dataset: Grid spacing is not identical,
plane separation varies, and image aspect and resolution vary,
meaning fan extents θ need to be tuned on a per-light-field basis. An
alternative would have been to convert the light fields to a uniform
relative two-plane parameterization and use generic fan extents.

In noise rejection experiments, the Stanford light fields were
generally downsampled to a maximum u, v size of 128 × 128 pix-
els to reduce memory requirements, though full-resolution spatial-
domain and hybrid results were also evaluated. Numeric results are
for monochrome versions of the light fields. When an experiment
calls for fewer than 17 × 17 apertures, we discard apertures at the
edge of the light field, retaining the central portion. For consistency
across experiments for which aperture counts can vary, metrics re-
port on the central image in s, t .

Displayed results are produced by taking a 2D slice of the 4D
filtered light field at the center of s, t . In this sense the filter is acting
as a rendering algorithm, though it only renders at the native u, v
resolution of the light field. As future work we consider extend-
ing the filter to also perform interpolation to greater resolutions.
This work in no way precludes the application of existing 4D-to-
2D plenoptic rendering methods [Lumsdaine and Georgiev 2008;
Bishop and Favaro 2012; Wanner and Goldluecke 2013].

In the following section, further validation of the hyperfan filter
is carried out on imagery collected using a commercially avail-
able Lytro lenslet-based light field camera. This imagery includes
low-light and turbid media examples. The raw lenslet images are
decoded to a 9 × 9 array of images, each having 380 × 380 pixels,
following Dansereau et al. [2013b]. Compared with the 17 × 17
images of the Stanford light fields, we expect significantly less
selectivity. However, there is still a potential 81-fold redundancy
in the imagery (practically slightly less due to lenslet vignetting),
allowing significant noise rejection to be demonstrated.

As empirical evidence of the frequency-hyperfan ROS of light
fields, we computed the DFT of the first six of the 12 Stanford light
fields, scaled to a common size, and selected the maximum magni-
tude at each frequency. The result, shown in Figure 11, establishes
the bounds of the light fields in frequency space; the hyperfan shape
is clearly evident. Note that this is true despite the varying light
field geometries and the presence of occlusions, non-Lambertian
surfaces, and aliasing.
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Fig. 13. Filtering results for the Stanford “Lego Knights” light field: (a) The original scene; (b) with additive white Gaussian noise; (c)–(i) show filter

outputs; the depth-tunable results (c), (e), and (f) are at the PSNR-optimal balance between noise rejection and reduction in depth of field; the effects of

mistuning are exaggerated in (k),(l); the hyperfan output is visually superior, with the nonlinear methods providing the most jarring artifacts, the Gaussian and

planar reducing edge content, and the dual fan and hypercone being less selective to noise. Original light field courtesy of the Stanford Computer Graphics

Laboratory.
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Fig. 14. Filtering the “Tarot Coarse” light field for synthetic noise based on a camera model including quantization, Poisson, Gaussian, and salt-and-pepper

noise. (a) The original light field; (b) the low-light image prior to salt-and-pepper noise and gain control; (c) the gain-adjusted input including salt-and-pepper

noise, and (d)–(k) the filter outputs; light refracting through the crystal ball violates the depth constraints, leading to attenuation of that content and a lower

PSNR for depth-selective filters (d), (f), and (g); the hyperfan nevertheless arguably provides the most visually appealing result. Original light field courtesy

of the Stanford Computer Graphics Laboratory.

ACM Transactions on Graphics, Vol. 34, No. 2, Article 15, Publication date: February 2015.



15:12 • D. G. Dansereau et al.

Fig. 15. Performance of the evaluated methods versus (a) aperture count; (b) noise level. The hyperfan generally shows the best performance.

Fig. 16. Performance of the evaluated methods versus (a) noise type; (b) metric. The hyperfan generally shows the best performance.

6.1 The Methods

We test a range of linear filters on the Stanford light fields, including
the three described in this article: the hyperfan (13), the hypercone
(11), and the dual fan (9). If our earlier assertions are correct, the
hyperfan will be the most selective of these, although how the
hypercone alone behaves will also prove interesting.

We further test a 4D Gaussian filter as well as a 4D planar
Gaussian filter that is the basis for synthetic refocusing of light
fields [Dansereau and Bruton 2003; Ng et al. 2005; Ng 2005].
Dictionary-based image denoising approaches do not exploit the
structure of the light field; nevertheless, by collapsing the light
field into a tiling of images, we test the overcomplete discrete co-
sine transform (DCT) [Guleryuz 2007] and K-SVD methods [Elad
and Aharon 2006; Aharon et al. 2006]. Finally, we test the block-
matching and filtering approach V-BM3D [Dabov et al. 2007] by
applying it over sequences of frames constructed along the s, t
dimensions.

6.2 Tuning

The hyperfan has four tunable parameters: the two depth limits and
filter rolloff associated with the dual-fan filter, and the bandwidth
associated with the hypercone. The optimal values for these de-

pend on the range of depths occupied by the scene, the number
of apertures in the light field, the noise level, and the light field
parameterization.

If no prior knowledge of scene depth is available, a great deal
of selectivity is nevertheless possible, as the valid range of plane
angles present in any light field is limited [Levin et al. 2009]. In the
relative two-plane parameterization, for example, all planes must
lie within the first and third quadrants in Ωs, Ωu and Ωt , Ωv , that
is, the plane angles are restricted to a 90◦ range. This observation
allows the fan limits to be pretuned for generic scenes, leaving only
the hypercone bandwidth to be tuned. Of course, knowledge of a
more selective depth range allows for more aggressive filtering.

For fixed fan angles and selectivity, Figure 12 demonstrates the
dependence of the optimal hypercone bandwidth on input noise level
and aperture count. We leave derivation of closed-form expressions
for these optima as future work; the following results are for filters
tuned to their PSNR-optimal bandwidths and depth limits through
exhaustive search.

6.3 Evaluation

Figures 13 and 14 are typical of the output from each filter—
numerical results are the peak signal-to-noise ratio (PSNR), as-
suming the uncorrupted input to be ideal. Figure 13 introduces
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Fig. 17. Hyperfan filter output PSNR (dB) over a range of noise levels for

the Stanford Archive.

Fig. 18. Examples of volumetric focus applied using a spatial-domain filter

implementation. Only the pixels shown in these 2D slices of the 4D output

light field were computed, saving significant processing time and memory.

(a) A slice of the input light field; (b) filtered with a narrow depth of field

centered on the crystal ball; (c) filtered with a wide depth of field containing

elements near the camera including the ball; (d) filtered with a wide depth

of field containing elements farther from the camera and excluding the ball.

Notice that the image within the crystal ball behaves similarly to foreground

scene elements and, as such, passes most clearly in (c). Original light field

courtesy of the Stanford Computer Graphics Laboratory.

additive Gaussian noise to the light field, while Figure 14 intro-
duces a model of low-light camera noise, including quantization
to 32 levels, intensity-dependent Poisson noise, additive Gaussian
noise (σ = 5% maximum pixel value), and salt and pepper noise
(5% density).

Fig. 19. Example of a multiple-passband filter constructed as the superpo-

sition of two hyperfans. Here only a volume surrounding the crystal ball is

left out of the focal volume. Notice how the crystal ball content is never-

theless left clear, as it behaves similarly to objects closer to the camera and,

as such, does not conform to the parallax motion of the stop-band signal.

Original light field courtesy of the Stanford Computer Graphics Laboratory.

Visually, the hyperfan outperforms the other filters in all cases,
though this will not always be true: Scene elements that violate the
underlying assumptions of Lambertian and nonoccluding scenes
will not generally conform to the hyperfan passband, and so the
filter will attenuate these elements. If a scene were dominated by
such elements, the filter could perform poorly. Note, for example,
the severely attenuated crystal ball content in Figure 14(d) which has
resulted in a decreased PSNR. Because the content being refracted
through the ball takes on apparent motion matching scene elements
close to the camera and outside the passband range, it has been
attenuated. These limitations are not always so jarring; the specular
highlights on the Lego knights’ helmets are mostly retained, for
example, while the noise is mostly rejected. Furthermore, some
applications can actually benefit from removal of non-Lambertian
and occluding energy, for example, geometric reconstruction and
visual odometry.

Figures 15 and 16 show each method’s performance for the “Lego
Knights” light field over a range of aperture counts, for a variety of
noise types, over a range of input noise levels, and evaluated with
a range of metrics. Note that the hyperfan outperforms the others
for aperture counts of five or more and continues to improve sig-
nificantly with aperture count (note the logarithmic vertical scale),
confirming the scalability of the approach.

The metrics depicted in Figure 16(d) are normalized to a maxi-
mum value of one. These represent the mean result over 21 levels
of additive Gaussian noise with σ = 10% to 70% maximum pixel
value. The first three metrics are, in order: PSNR, an SVD-based
similarity measure [Shnayderman et al. 2006], and a structural sim-
ilarity measure SSIM [Wang et al. 2004]. The remaining three met-
rics apply only to linear methods and linear noise, as they rely on
separating the filter’s treatment of noise and signal. By filtering
the original image and the noise alone, the attenuation to each can
be evaluated separately. Shown, in order, are the energy remaining
when filtering the original image, the edge content of that filtered
image measured as the mean magnitude of the first derivative of
the image, and the inverse of the energy remaining in the filtered
noise signal. Because of normalization, the best performance for all
metrics is one.

ACM Transactions on Graphics, Vol. 34, No. 2, Article 15, Publication date: February 2015.



15:14 • D. G. Dansereau et al.

Fig. 20. Hyperfan filter outputs without (left) and with (right) inclusion

of aliased components, for filters passing distant (top) and nearby (bottom)

volumes. Note a significant sharpening of distant passband elements in the

top-right figure due to inclusion of the aliased components. These same

components masquerade as passband elements in the bottom figures, ap-

pearing as high-frequency lines. Original light field courtesy of the Stanford

Computer Graphics Laboratory.

Inspecting the metric results, the humble Gaussian filter takes on a
prominent position in the first three metrics, even taking the lead for
the SVD metric. Note, however, that the Gaussian also attenuates
the most edge content. All linear methods are similar in passing
signal energy, and the dual fan outperforms the hyperfan in edge
content, although it also does a poor job of attenuating noise energy,
thus its weak PSNR. The nonlinear methods do well according to
the SVD but a visual analysis shows that the artifacts they introduce
are jarring to the human visual system. On the whole, the hyperfan
attenuates the most noise energy while passing the second-to-best
edge content, surpassed in this respect only by the poorly selective
dual fan. The hyperfan also dominates in structural similarity and
PSNR, outperformed by its nonlinear counterparts only in the SVD
metric.

Drawing on the variety of light fields available in Stanford’s
archive, Figure 17 shows the hyperfan’s performance over a range
of inputs. Notice the proportional falloff in output PSNR as input
noise increases. The output quality throughout these results is high
and consistent, despite the varying presence of occlusions, specular
reflections, and refractions in the light fields—all phenomena that
break the assumptions behind the filter. The weakest performance
is for “Tarot Coarse”, which we attribute to refraction in the scene
as seen in Figure 14(d).

6.4 Spatial-Domain Implementation

We employed the spatial-domain implementation described in
Section 5.4 to demonstrate volumetric focus on the full-resolution

Fig. 21. Filtering low-light imagery from a Lytro consumer-grade light

field camera: (a,b) Low-contrast input, (c,d) gain-adjusted images, and (e,f)

filter output, showing a visible improvement in SNR. The filtered results

demonstrate both noise rejection and depth selectivity, with specks of dirt

on the side of the aquarium being attenuated based on depth – one such dirt

speck is indicated by the black arrow.

Stanford Archive light fields. Examples are shown in Figure 18.
We found that the number of nonzero impulse response samples
required to obtain high-quality results varies with the depth of field
of the passband signal. The narrow-passband filter employed to
generate Figure 18(b) was well approximated with 2,000 impulse
response entries, while the wider depth-of-field examples (c) and
(d) required 40,000 samples.

It is possible to synthesize interesting filters by combining mul-
tiple hyperfans. This can be accomplished by taking the maximum
magnitude response across two or more filters, for example, yielding
a single-step linear filter with a complex passband. Figure 19 shows
the result of including most of the tarot scene in the passband, with
the exception of a narrow volume surrounding the crystal ball. Such
disconnected focal regions cannot be obtained using conventional
cameras, and might be useful in removing occluding interference
from scenes comprising objects of interest at multiple depths, for
example.

6.5 Aliased Components

Some of the Stanford light fields contain substantial aliasing in s
and t . Figure 20 demonstrates the impact of including these aliased
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Fig. 22. A demonstration of imaging in a turbid medium. The histograms beneath each image indicate the distribution of pixel intensities in white and

black checkerboard squares, and numeric values are CNR for the same. (a) The low-contrast input is not ameliorated by (b) adding light, due to backscatter

and saturation (note the change in scale on the histograms); (c) backscatter compensation increases contrast but is noise limited, while (d) hyperfan filtering

significantly reduces noise, yielding higher-CNR results; (e) further improvement is possible by trading off depth of field in this planar scene.

components in the passband of a hyperfan filter as described in
Section 5.2. Note the dramatic improvement in passband perfor-
mance on the back wall of the Lego scene; this scene content ap-
pears at a large slope in s, u, showing substantial aliasing in s and t .
Note also that the presence of aliased components in the stop-band
signal, shown in the bottom two images, is probably impossible to
remove by purely linear means, as the undesired and desired signals
overlap in the frequency domain.

7. EXPERIMENTS: LENSLET-BASED CAMERA

Validation was carried out on imagery collected using a Lytro
consumer-grade lenslet-based hand-held light field camera; typi-
cal low-contrast results are depicted in Figure 21. The left column
depicts a low-light aquarium scene, and the right depicts a low-
light outdoor scene. Inspection of the unfiltered and filtered images
shows that the hyperfan filter has significantly attenuated the noise.
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Fig. 23. A scene with suspended particulate matter and relatively clear wa-

ter. Numerical results are CNR over the checkerboard region of the image,

and images in the right column have been backscatter compensated. Rela-

tive to the input (top) the hypercone filter reduces noise (center), but does

not attenuate particulate occluders. The hyperfan filter reduces noise and

attenuates the occluders while maintaining focus over the scene’s volume

(bottom).

Note also that the specks of dirt on the side of the aquarium in the
top row have been rejected by the depth selectivity of the filter; one
of these is indicated by a black arrow in the inset depicting a Silver
Dollar fish.

7.1 Murky Water and Particulate Matter

Figure 22 depicts a checkerboard as imaged through turbid water.
The histograms beneath each image show the distribution of pixel
intensities corresponding to white (top) and black (bottom) checker-
board squares, where intensity is taken as the mean of the three color
channels. Numeric values are Contrast-to-noise-ratio CNR rather
than PSNR, because this is more reflective of the quality of images
in the presence of a scattering medium. PSNR neglects the biasing
effect of backscatter, which effectively limits the range and contrast
of a signal. Contrast was taken as the difference between the means
of pixels belonging to white and black checkerboard squares, and
noise level as the standard deviation of pixels from their respective
distribution means.

Fig. 24. Similar to Figure 23, except here the water is considerably more

turbid, showing a lower CNR in the input image (top) and a greater advantage

in applying the hypercone filter without depth selectivity (center). Again the

hyperfan filter attenuates occluders (bottom).

In Figure 22 illumination and camera were co-located, resulting
in significant backscatter as seen in (a). The result of increasing il-
lumination is depicted in (b), where saturation and backscatter have
limited the efficacy of this approach both visually and in terms of
CNR. The result of gain-adjusting the input is shown in (c), includ-
ing removal of a low-frequency biasing term caused by backscat-
ter. The biasing term was estimated by low-pass filtering in the u
and v dimensions. Notable is the similarity of this adjusted im-
age to a gain-adjusted low-light image, where noise has limited
the extent to which contrast can be enhanced. The final two im-
ages show the output of the hyperfan filter tuned to two different
depth ranges: the first is for a wide depth range including content
between the camera and the checkerboard, while the final image
is for a narrow filter more closely matching the geometry of this
constant-depth scene. In all cases, the noise reduction effected by
the hyperfan filter has been significant visually and in terms of
CNR.

In applications involving heterogeneous occluders, such as snow,
rain, or particulate suspended in water, the depth selectivity of the
hypercone filter becomes an asset in reducing the influence of the in-
terfering elements. Figures 23 and 24 show scenes imaged through
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Fig. 25. Visual impact of the fan angle and hypercone bandwidth of a hyperfan filter. Columns from left to right correspond to hypercone bandwidths of 0.1,

0.2, and 0.4, and rows from top to bottom correspond to dual-fans subtending slopes mDF of 0, ±0.5 and ±1. Note that wider fans admit a greater range of

depths, broadening the depth of field, but also admitting more noise. Narrower hypercones admit less noise, but attenuate non-Lambertian effects including

occlusions (this appears as streaking in the left column of images).

fine, suspended particulate matter. The hypercone filter increases the
CNR of the images, but has little effect on the particulate matter,
while the hyperfan both reduces noise and attenuates the occluding
particles. We attribute the decrease in CNR between the hypercone
and hyperfan output in Figures 24(c) and (e) to the nonstation-
ary mean across the image caused by backscatter, which is not
accounted for in the CNR metric. Note that the CNR for the cor-
responding backscatter-compensated images reflects the qualitative
improvement in these images.

Figure 23 features clearer water than Figure 24 and there is there-
fore less advantage in applying the hypercone. That scene also
includes a foreground element positioned approximately halfway
between the checkerboard and the camera, requiring that a volu-

metric focal region be utilized to keep all scene elements in focus.
This figure underlines that particle attenuation is not achieved by the
same mechanism as noise reduction. There is adequate illumination
in this scene, and the noise level is low. All the scene elements,
including the particulate matter, conform to the rules of parallax
motion and will therefore fall within the frequency hypercone in
the light field. It is the depth selectivity of the hyperfan that allows
us to single out the desired scene elements.

Note that CNR is a useful but inaccurately named measure in
this context, as the “noise” value includes interference from the
particles. A more accurate term would be the contrast-to-noise-and-
interference ratio, similar to the carrier-to-noise-and-interference
ratio employed in telecommunications [Proakis and Salehi 2007].
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7.2 Visual Impact of Bandwidth

To investigate the visual impact of the dual-fan angle and hypercone
bandwidth, hyperfan filters over a range of settings were applied
to light fields taken in low light, or with noise artificially added.
Figure 25 shows a typical result: wider fans admit wider depths of
field, but attenuate noise less effectively. At the same time, narrower
hypercone bandwidths attenuate noise more effectively, but also
attenuate potentially desirable non-Lambertian effects, including
occlusion.

8. DISCUSSION AND FUTURE DIRECTIONS

We have established that the frequency-domain ROS of a light field
image is a hyperfan at the intersection of a dual fan and a hypercone.
We have designed, implemented, and tested a novel volumetric
focus filter that selectively passes this ROS. This approach to light
field denoising is linear and featureless, operating efficiently as a
single-step, constant-runtime filter.

We have demonstrated the filter outperforming a range of lin-
ear and nonlinear alternatives over a range of conditions, includ-
ing noise type, noise level, aperture count, and scene content. Test
scenes included examples of occlusion, non-Lambertian surfaces,
attenuating media, and interference.

Numeric results were shown for 12 light fields from the Stanford
Light Field Archive, including representative images and quanti-
tative results over a range of metrics. The filter was shown effec-
tive at removing noise in all cases, generally outperforming the
other methods we evaluated including planar, dual-fan, overcom-
plete DCT, K-SVD, and video-based VBR3D methods. We also
showed that the hyperfan filter’s performance scales with aperture
count.

Further results demonstrated the filter on imagery collected with
the Lytro consumer-grade light field camera, including scenes with
low light, turbid (murky) water, and suspended underwater partic-
ulate matter. We showed how increased illumination can lead to
saturation in the presence of backscatter, effectively limiting how
much light can be employed to mitigate contrast limits in underwa-
ter imaging. The hyperfan filter was shown to significantly improve
CNR and visibly improve image quality. Finally, we demonstrated
that, where aliased components are present, an inclusion of these
components in the filter’s passband can significantly improve output
performance.

There are several immediate avenues for future work. Automated
means of selecting filter parameters would be desirable, and we
believe the hyperfan filter could be useful for a range of interesting
tasks, including compression and interpolation. The inverse-DFT
FIR-based approach we presented was only one of many possi-
ble approaches to spatial-domain implementation. The FIR filter
design might benefit from iterative refinement similar to that pre-
sented in Cetin et al. [1997], for example, and recursive infinite
impulse response (IIR) filters may be more appropriate in some ap-
plications, particularly where hardware implementation would be of
benefit.

The 2012 paper “When Does Computational Imaging Improve
Performance?” and follow-on work [Cossairt et al. 2012; Mitra
et al. 2013] provide theoretical bounds on image improvement and
relate it to absolute light levels. It would be interesting to evaluate
the hyperfan filter in this context, and against other computational
photography techniques such as focal sweep and flutter shutter
[Nagahara et al. 2008; Raskar et al. 2006].

Finally, the hyperfan filter can attenuate desired occluding edges.
In the case of the wide depth-of-field Lego Knights scene, for

example, some ghosting is visible in desired, occluding foreground
elements. A means of better dealing with these occlusions would
be desirable, perhaps through detection and refinement of small
subsets of the light field using a more complex method, like
the variational Bayesian framework proposed in Goldluecke and
Wanner [2013], or by employing a form of median filtering like that
proposed in Vaish et al. [2006].
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