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1. The Multi-View Light Field Dataset

The multi-view light field (LF) dataset is, to our knowl-

edge, the first large dataset of its kind. All images were cap-

tured with a hand-held Lytro Illum camera, and each scene

photographed from a diversity of camera poses. The indi-

vidual LFs have small baselines, on the order of a centime-

ter, while the camera poses vary over a broader baseline,

on the order of a meter or more. This emulates the case of

a single, mobile lenslet-based LF camera, or multiple LF

cameras operating simultaneously.

The dataset contains 4211 LFs organized into 30 cat-

egories. There are 850 scenes, with most scenes cap-

tured from between 4 and 6 poses. There are examples

of scenes with as few as 3 poses, and some with 7 or

more. A set of ‘clusters’ files identify which images be-

long in each scene. The dataset is available at http:

//lightfields.stanford.edu/mvlf.

1.1. Camera

The dataset was collected with a single hand-held Lytro

Illum camera. Focus, zoom, and exposure settings were not

fixed, but vary from image to image. Metadata and cali-

bration data for the camera, including flat-field images, are

included with the dataset.

1.2. Light Fields

The file formats included in the dataset are depicted in

Fig. 1. Each image is available as a raw Lytro LFR file and

a decoded ESLF file, with LFRs and ESLFs available as

separate downloads. Decoding either file type requires the

calibration data from the camera, which is available with

the dataset.

LFR files contain the raw lenslet image as stored on the

camera. They have 7728 × 5368 pixels, 12 bits of Bayer-

coded colour depth, and about 14× 14 pixels per lenslet in

a hexagonal grid that is not pixel-aligned. These can be de-

coded using an open-source toolbox [4] or the Lytro Power

Tools. Each LFR occupies about 55 MBytes of space.

Figure 1. File types included in the dataset: (bottom) a 2D render

and depth map as produced by the Lytro Power Tools, and (top) a

crop of the 2D render, a raw LFR file, and a de-Bayered, aligned,

and rectified ESLF file. Also included is a per-LF metadata file

specifying camera settings including zoom, focus, exposure, and

gain settings.

ESLF files are a decoded LF format that has been de-

Bayered and pixel-aligned to an orthogonal grid of lenslet

images. These are easy to load and interpret as a 2D array of

2D images, i.e. a 4D LF. The ESLF files in the dataset were

produced using the Lytro Power Tools Beta, and stored as

PNG files with 7574×5250 pixels. There are 14×14 pixels

per lenslet and about 541× 375 lenslets, though this varies

between LFs. In addition to de-Bayering and aligning, the

Lytro tool also applies rectification, reducing the appear-

ance of lens distortion. We applied lossless PNG compres-

sion and reduced the bit depth to 8 bits per channel yielding

an average file size of 50 MBytes.

Each LF is accompanied by a metadata file, rendered

extended-depth-of-field 2D image, and a depth map, also

generated using the Lytro Power Tools. The metadata file

includes focus, zoom, exposure, and gain settings. The

rendering settings for producing the extended-depth-of-field

images are included in the dataset.

http://lightfields.stanford.edu/mvlf
http://lightfields.stanford.edu/mvlf


Figure 2. Geometry relating λ from the depth map files to slope

observed in the sampled LF – see Sect. 1.3. A scene point (right)

imaged through the main lens (blue) forms an image inside the

camera. This in turn is imaged by the microlenses (green) onto

the sensor (left).

1.3. Depth Maps

A point in 3D space appears in the LF as a plane with

slope inversely proportional to the point’s depth [1, 3, 5].

The depth values produced by the Lytro Power Tools de-

scribe the image created inside the camera by the main lens.

These can be related to the slope as it appears in the sampled

LF with enough information about the microlens and pixel

geometry. It can also be related to the 3D shape of the scene

with enough information about the main lens. Note that the

depth maps are estimates, they are not ground truth nor are

they a gold standard for depth estimation from LFs [6].

Each pixel of the depth map encodes a ratio λ, with the

mapping from grayscale provided in a separate metadata

file. Referring to Fig. 2, λ is the distance of a point’s im-

age inside the camera to the microlens array, divided by the

focal length of the microlenses:

λ =
dI

dµ
. (1)

For images behind the microlenses, dI and λ are negative.

λ can be related to the slopes appearing in the sampled LFs

following the similar triangles in the figure,

ds

dµ
=

ρµ

dI
, (2)

where ρµ is the lenslet pitch, and ds is the the apparent mo-

tion of a point when moving from one lenslet to the next,

i.e. the continuous-domain slope. It is convenient to use the

inverse of this slope, and to convert to pixels for the sampled

LF:

m =
ρs

ds
, (3)

where ρs is the pixel pitch. Combining the above we find

m =
ρs

ρµ
λ. (4)

Figure 3. Six views of a scene shown alongside the Lytro-

generated depth maps.

For the Illum, ρs = 1.4µm, ρµ = 20µm, and dµ = 40µm,

so

m =
1.4

20
λ. (5)

A point at the focal plane of the camera will be focused

on the microlens array, and have λ = 0, m = 0. This

makes sense since we know a point at the camera’s focal

plane appears only beneath a single microlens. Objects be-

yond the focal plane will appear with positive λ and slope,

while objects closer than the focal plane will have negative

λ and slope, as expected. Manual inspection shows that the

slopes appearing in the dataset’s ESLF-encoded LFs agree

well with the λ values in the depth maps following (5).

Relating slopes to depths in the scene is also possible.

The main metadata file specifies λ∞, the λ corresponding

to an object at infinity, as well as the effective focal length of

the main lens, for the particular camera zoom and focus set-

tings used to take each photo. This is enough information

to transform λ to depth via the thin lens equation, though

the accuracy of estimates resulting from this approach is

unclear. Depth estimation from LFs is an active area of re-

search [2, 4, 6, 7].

Most LFs in the dataset contain substantial depth varia-

tion, see for example Figs. 1 and 3. A histogram of the oc-

currence of slopes over all pixels of all images in the dataset,

based on the λ values in the depth maps, is shown in Fig. 4.

Most scene content falls between slopes of ±1.

1.4. Scenes

Scenes fall into one of 30 categories, listed in Table 1

along with the numbers of scenes and images appearing in

each category. The distribution of image counts per scene

is shown in Table 2.

Scenes are of typical indoor office and outdoor urban

campus environments. They include Lambertian and non-

Lambertian surfaces, fine and coarse occlusion, specular-

ity, transparency, translucency, and subsurface scattering.

No particular attempt was made to emphasize challenging

content. Examples of the types of images contained in the



Figure 4. Histogram of slopes appearing in the dataset, based on

the depth maps; most content appears between ±1.

dataset are shown in Fig. 5, and example multi-view se-

quences are shown in Fig. 6.

There is moderate motion blur in some of the scenes,

caused by motion / shake of the hand-held camera. This

is especially true for indoor scenes where illumination was

lower, though there are also some outdoor scenes with mo-

tion blur. Some scenes contain dynamic elements, e.g. mov-

ing people and swaying vegetation, and this content will not

be consistent between camera poses. An effort was made to

keep dynamic content to a minimum.

1.5. Conclusion

It is our hope that this dataset will enable a broad range of

research into multi-view LF processing including registra-

tion, calibration, structure-from-motion, interpolation, and

feature extraction.

Acknowledgments This work was supported in part by

the NSF/Intel Partnership on Visual and Experiential Com-

puting (Intel #1539120, NSF #IIS-1539120).

References

[1] E. H. Adelson and J. Y. A. Wang. Single lens stereo with a

plenoptic camera. IEEE Transactions on Pattern Analysis and

Machine Intelligence (TPAMI), 14(2):99–106, 1992. 2

[2] Y. Bok, H.-G. Jeon, and I. S. Kweon. Geometric calibration

of micro-lens-based light-field cameras using line features. In

Computer Vision–ECCV 2014, pages 47–61. Springer, 2014.

2

[3] R. Bolles, H. Baker, and D. Marimont. Epipolar-plane image

analysis: An approach to determining structure from motion.

Intl. Journal of Computer Vision (IJCV), 1(1):7–55, 1987. 2

[4] D. G. Dansereau, O. Pizarro, and S. B. Williams. Decoding,

calibration and rectification for lenselet-based plenoptic cam-

eras. In Computer Vision and Pattern Recognition (CVPR),

pages 1027–1034. IEEE, June 2013. 1, 2

[5] I. Ihrke, J. Restrepo, and L. Mignard-Debise. Principles

of light field imaging. IEEE Signal Processing Magazine,

1053(5888/16), 2016. 2

Image category Scene count Image count

Bamboo 10 49
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Books 5 27

Bottles 7 37

Boxes 30 177
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Fire Hydrants 3 12
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Misc 30 167

Pens & Pencils 26 136

Phones 5 27

Screws 9 47

Shelf 5 23

Signs 38 186

Succulents 19 94

Tables 23 115

Tools 12 70

Trees 83 399

Total 850 4211

Table 1. The 30 categories present in the dataset, along with the

scene count and image count for each category.

Images per scene Count

3 27

4 250

5 343

6 197

7 29

9 1

10 1

13 1

Table 2. Occurrence of image counts per scene: all scenes have at

least 3 images, most have between 4 and 6, and a few have 7 or

more.
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Figure 5. A collection of 2D renders showing typical scene content contained in the dataset.



Figure 6. A set of multi-pose sequences of between 4 and 7 images showing the typical view diversity of the dataset.
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