

Richardson-Lucy Deblurring for Moving Light Field Cameras

<u>Donald Dansereau</u>¹, Anders Eriksson² and Jürgen Leitner^{2,3} ¹Stanford University, ²Queensland University of Technology, ³ARC Centre of Excellence for Robotic Vision

CVPR:LF4CV Workshop 2017 July 26

3D Motion Complicates Vision

Scene-dependent nonuniform apparent motion

We have 6-DOF virtual camera control

Video Stabilization

Dynamic Scene: Loader

1 of 5 Input Views

Our Extension of Buehler et al. '01

Our Spacetime Optimization Approach

http://pages.cs.wisc.edu/~lizhang/projects/lfstable/

ComputationalImaging.org

[Smith2009]

We can fix the camera's position

Per-pixel still-camera methods

- Change detection
- Tracking/segmentation
- Velocity & temporal filtering

Closed-Form Change Detection

[dansereau2016]

http://dgd.vision/Projects/LFChangeDet/

We can fix the camera's position

Per-pixel still-camera methods

- Change detection
- Tracking/segmentation
- Velocity & temporal filtering

Closed-Form Change Detection

[dansereau2016]

http://dgd.vision/Projects/LFChangeDet/

We can fix the camera's position

Per-pixel still-camera methods

- Change detection
- Tracking/segmentation
- Velocity & temporal filtering

Closed-Form Change Detection

[dansereau2016]

http://dgd.vision/Projects/LFChangeDet/

Lukas-Kanade optical flow generalizes to 6-DOF

Linearize Apparent Motion

Closed-form 6-DOF Odometry

[Neumann2002, Dansereau2011, Dong2013]

-15

Lukas-Kanade optical flow generalizes to 6-DOF

Linearize Apparent Motion

Closed-form 6-DOF Odometry - True Plenoptic Pointwise - Feature z (m) 10 12 y (m)

[Neumann2002, Dansereau2011, Dong2013]

x (m)

-15

Blur in 3D Scenes

Convolution models blurring in 2D...

Can we replace convolution with LF rendering in 3D scenes?

Related Work

"Light Field Blind Motion Deblurring" [Srinivasan 2017]

<u>LF-RL</u>

- Requires extension to be blind
- 6-DOF
- Proof of convergence to ML estimate (see paper)
- New LF equiparallax regularizer

 $\min_{\mathbf{l},\mathbf{p}(t)} ||\mathbf{\hat{f}}(\mathbf{l},\mathbf{p}(t)) - \mathbf{f}||_2^2 + \lambda \psi(\mathbf{l})$

- 3-DOF
- Insights on blur manifestation in LF
- Blind
- Modern optimization (ADAM)

Related Work

"Richardson-Lucy Deblurring for Scenes under a Projective Motion Path" [Tai et al. 2011]

Richardson-Lucy Deblurring

Light Field Richardson-Lucy

Light Field Richardson-Lucy

Light Field Richardson-Lucy

Regularization

Anisotropic total variation Favour textural edges

[Goldluecke & Wanner 2013, Heber2013]

$$R_{tv}(\nabla L) = \int_{\Omega} \sqrt{\nabla L(\omega)^T D \nabla L(\omega)} + \epsilon \, d\omega,$$

Equiparallax

Favour equal slopes in s,u and t,v

$$\frac{\nabla_s L(w)}{\nabla_u L(w)} = \frac{\nabla_t L(w)}{\nabla_v L(w)},$$

$$R_{ep}(\nabla L) = \int_{\Omega} \sqrt{g(\omega)^2 + \epsilon} \, d\omega,$$
$$g(\omega) = \nabla_s L(\omega) \nabla_v L(\omega) - \nabla_u L(\omega) \nabla_t L(\omega),$$

Rendered Results: Rot about y

Rendered Results: Rot about y

Rendered Results: Rot about y

Rendered Results: Rot about z

Rendered Results: Rot about z

Rendered Results: Trans along x

Rendered Results: Trans along x

Rendered Results: Rot about z

Rendered Results: Rot about z

Rendered Results: Trans along z

Rendered Results: Trans along z

Rendered Results: Trans along z

Quantitative Evaluation

Repeatable camera motion Isolated dimensions Known magnitudes

No increase in noise Regularization is helping Large increase in sharpness

Summary & Future Work

Generalized convolutional blur using LF Rendering Applied to RL deblurring 3D scenes, 6-DOF camera motion Proof of convergence to ML estimate

Equiparallax regularization

<u>Next</u>:

Equiparallax regularization: applications Beyond 6-DOF, defocus Blind deblurring

Acknowledgments

Australian Government

Australian Research Council

QUT HPC Group

George

Light Field Toolbox for MATLAB

Load Gantry and Lytro imagery Calibrate and rectify Lytro imagery Linear depth, volume filters Denoising: low-light, fog, dust, murky water Occluder removal: rain, snow, silty water

LF Synth: Bare-Bones Rendering

