Exercise 1a: Handling LFs in Matlab

In this exercise you will use the Light Field Toolbox to load some common light field formats and apply basic linear filters.

Toolbox Installation

Download the light field toolbox from the mathworks website <u>https://www.mathworks.com/matlabcentral/fileexchange/49683-light-field-toolbox-v0-4</u> or <u>http://dgd.vision/LF2018/LFToolbox0.4.zip</u>. Unzip to a new folder and open the documentation file LFToolbox.pdf. Follow Section 2 to set up the toolbox paths.

A Tour

Follow the tour in Sections 3.1, 3.2 and 3.3 of the toolbox documentation. This includes:

- Downloading samples
- Decoding lenslet-based images and loading gantry-style images
- Rectifying lenslet-based images
- Applying basic linear filters step through the demos carefully and take note of the the different spatial-domain, frequency-domain, 2D and 4D filtering functionality
- Visualizing light fields interactively with the mouse

Note: When the toolbox rectifies a light field it produces a plenoptic intrinsic matrix assuming a plane separation D=1m and employing the relative two-plane parameterization.

The light fields are indexed in the order [j,i, l,k, c], corresponding to the continuous spatial-domain light field dimensions [t,s,v,u], with the final index corresponding to r,g,b colour channels and a weight channel.

Visualize: Load a Lytro light field and visualize it as slices in i,j; in k,l; and as epipolar slices in i,k; and in j,l. Visualize the weight channel in these slices also. Hint: LFDisp automatically squeezes, centers, e.g. LFDisp(LF) and LFDisp(LF(5,:,100,:,:)) both work.

Questions

- 1. Inspect the plenoptic intrinsic matrix for a rectified Lytro image. Does it correspond to a camera array plenoptic intrinsic matrix? Where does it differ from one?
- 2. Can you force the rectification process to yield a plenoptic intrinsic matrix that does correspond to a camera array? How? Why might you want to do this? (Hint: see Sect 5.2 of the toolbox manual)
- 3. Which is faster for applying linear focus: two separate 2D filters, or a single 4D filter? Why?
- 4. What's the purpose of the fourth colour channel? What causes its appearance? What's the impact of removing this information when filtering?