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This is a set of tools for working with light field (aka plenoptic) imagery in
Matlab. Features include decoding, calibration, rectification, colour correction,
basic filtering and visualization of light field images. New in version 0.4 are
some linear depth/focus and denoising filters.

Download the sample light field pack at http://www-personal.acfr.usyd.
edu.au/ddan1654/LFToolbox0.3_Samples1.zip. Sample calibration datasets
can be found at http://marine.acfr.usyd.edu.au/plenoptic-imaging.

Compatibility

LFToolbox 0.4 is reverse-compatible with LFToolbox 0.3. The original Lytro
camera (the “F01”) and the Lytro Illum are supported under Lytro Desktop 4
and 3. Calibration and rectification of Illum imagery is experimental.

Users upgrading directly from LFToolbox 0.2 will need to re-run calibration
and decoding and update some parameter names.
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Suggestions, bug reports, code improvements and new functionality are wel-
come – email Donald.Dansereau+LFToolbox at gmail dot com.
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1 Changes and Future Plans

Please see the README file for details.

2 Setting up the Toolbox

After unzipping the toolbox files to an appropriate location, run the convenience func-
tion LFMatlabPathSetup to set up the Matlab path. This must be re-run every time
Matlab restarts, so consider adding a line to startup.m, e.g.

run('˜/MyMatlabCode/LFToolbox0.2/LFMatlabPathSetup.m')

3 A Quick Tour

3.1 Decoding the Sample Light Fields

1. Download the LF Toolbox and decompress into an appropriate location. Run
LFMatlabPathSetup to set up Matlab’s paths.

2. Download the sample light field pack at http://www-personal.acfr.usyd.

edu.au/ddan1654/LFToolbox0.3_Samples1.zip and decompress into its own
folder. The samples folder structure was chosen for easy addition of your own
cameras and calibrations:

Samples Top level of samples
Images Sample light field images

F01 F01 images
Illum Illum images

Cameras Stores info for one or more cameras
A000424242 Camera used to measure F01 samples

CalZoomedOutFixedFoc A single calibration result
WhiteImages White images for the F01 camera

B5143300780 Camera used to measure Illum samples
WhiteImages White images for the Illum camera

From within Matlab cd into the top level of the samples folder. If you are in
the correct location, the Matlab command ls should list the top-level folders:

Images

Cameras

3. Run LFUtilProcessWhiteImages to build a white image database. This
searches the Cameras folder for white images, generating a lenslet grid model
for each – the grid models are saved as *.grid.json. The database of white
images is saved as Cameras/WhiteFileDatabase.mat, and is used in selecting
the appropriate white image for decoding each light field.

As of version 0.3 of the toolbox, samples ship with precomputed .grid.json

files. These files may be removed in order to force their re-generation. When
doing so, for each lenslet grid model figures similar to Fig. 1 are presented for
visual confirmation that the grid model is a good fit. Each figure shows a small
subset of the whole frame to allow close inspection of the lenslets. Five such
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Figure 1: Example of a white image showing estimated lenslet centers as red
dots.

images are shown, one for each image corner and one for the central portion
of the image. Each red dot should appear near the center of a lenslet – i.e.
near the brightest spot on each white bump, as depicted in Fig. 1. It does not
matter if there are a few rows of lenslets on the edges with no red markers.

4. Run LFUtilDecodeLytroFolder to decode the sample light fields. The
script searches the Images folder and its sub-folders for light fields and de-
codes each. By default it searches for all compatible Lytro light field formats,
including lfp and raw.

The decoding process selects the appropriate white image for each light field
and saves the decoded 4D light fields, * Decoded.mat, and thumbnail, *.png,
alongside the input images. A thumbnail of each light field is also displayed as
it is decoded. Thumbnails are histogram-adjusted, but the saved light field is
not. Example thumbnails are shown in Fig. 2.

5. (optional) Re-run LFUtilDecodeLytroFolder to perform colour correction.
Use the commands

DecodeOptions.OptionalTasks = 'ColourCorrect';

LFUtilDecodeLytroFolder([], [], DecodeOptions);

The DecodeOptions argument requests the optional task colour correction be
performed. The first and second arguments are omitted by passing empty
arrays [].

Colour correction applies the information found in the light field metadata,
including basic RGB colour and Gamma correction.The script keeps track of
which operations have been applied to each light field, and so it will not repeat
the decoding process, but will instead load each already-decoded light field,
operate on it, and overwrite it with the colour-corrected light field. Similarly,
subsequent requests will not repeat the already-completed colour correction
operation.

Decoding and colour-correction can be performed in one step by including the
ColourCorrect task in the first call to LFUtilDecodeLytroFolder.

As of version 0.3 of the toolbox, histogram adjustment is no longer automat-
ically applied – you may apply histogram equalization using LFHistEqualize.
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Figure 2: Decoded (top) and colour-corrected output (bottom) – the white
speckles in the bird image are due to a pane of grubby glass between the camera
and the bird. Running LFDispVidCirc or LFDispMousePan creates a shifting-
perspective view in which this is more clear.

Illum imagery is not gamma-corrected. Example colour-corrected output is
shown in the bottom row of Fig. 2, and in Fig. 3.

6. (optional) Use LFDispVidCirc or LFDispMousePan to visualize the light
field with a shifting perspective. First load a light field using a command of
the form

load('Images/F01/IMG_0001__Decoded.mat');

to load the light field variable LF, then run either LFDispVidCirc(LF) or
LFDispMousePan(LF). The former automatically animates a circular motion,
while the latter allows mouse-controlled motion: click and drag in the window
to change the perspective. Try a larger display with LFDispMousePan(LF, 2)

or LFDispVidCirc(LF, [], [], 2), which doubles the displayed size. Close
any open display windows before changing display sizes.

7. (optional) Run LFUtilProcessCalibrations then re-run LFUtilDecode-

LytroFolder to perform rectification. To rectify a specific light field, use the
commands

DecodeOptions.OptionalTasks = 'Rectify';

LFUtilDecodeLytroFolder( ...

'Images/F01/IMG_0002__frame.raw', [], DecodeOptions);

The LFUtilProcessCalibrations script builds a calibration database which it
saves in Cameras/CalibrationDatabase.mat. This file allows selection of the
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Figure 3: Decoded and colour-corrected Illum images, manually Gamma-
corrected by raising to the power 0.7.

calibration appropriate for each light field. Only one calibration is provided in
the Sample Pack, and it is appropriate only for the F01 samples 2 and 5.

As in the colour-correction example, we pass an OptionalTasks argument, this
time requesting rectification. The rectified light field overwrites the decoded
light field file, and the decoding script will not repeat already-completed recti-
fications. The result of rectifying Sample 2 is shown in Fig. 4.

3.2 Loading Gantry-style Light Fields

New in version 0.3 of the toolbox is LFReadGantryArray, which will read gantry-
style light fields such as those available at the Stanford Light Field Archive at http:
//lightfield.stanford.edu. Gantry-style light fields are generally collected by a
single camera mounted on a robotic gantry, though any light field stored as an ordered
collection of individual images can be read using this function.

1. Download an image archive from the Stanford light field archive http://

lightfield.stanford.edu, e.g. the LegoKnights light field. Download the
“Rectified and cropped” version.

2. Unzip the archive into a dedicated folder for Stanford samples, following a
structure like this:

Stanford Top of Stanford light fields
JellyBeans

rectified Rectified and cropped image files
LegoKnights

rectified Rectified and cropped image files

3. Run LFReadGantryArray from the top-level of the Stanford samples:

LF = LFReadGantryArray('LegoKnights/rectified', struct('UVLimit', 256));

This loads the LegoKnights light field into a 17 x 17 x 256 x 256 x 3 array.

4. Run LFDispMousePan to display the loaded light field.

It’s possible to read the Stanford light fields at full resolution, e.g. the following
yields a 17 x 17 x 1024 x 1024 x 3 array, occupying 909 MBytes of RAM:
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Figure 4: F01 Sample 2 before and after rectification, with insets showing the
reversal of lens distortion.

LF = LFReadGantryArray('LegoKnights/rectified');

A few of the Stanford light fields follow a lawnmower pattern. These can be read
and adjusted as follows:

LF = LFReadGantryArray('humvee-tree', struct('STSize', [16,16]));

LF(1:2:end,:,:,:,:) = LF(1:2:end,end:-1:1,:,:,:);

3.3 Basic Filters

New in LFToolbox 0.4 are some basic filters, including a shift-and-sum filter for planar
focus, and a set of linear 2D and 4D filters for planar and volumetric focus.

Run one of LFDemoBasicFiltLytroF01 or LFDemoBasicFiltIllum for a demo of
some of the filters operating on Lytro imagery. This should be done from the top level
of the Samples folder, after decoding the light fields as described in Sect. 3.1. The
best performance is obtained with rectified light fields.

Run LFDemoBasicFiltGantry for a demo filtering the Stanford light fields. This
should be done from the top of the Stanford light fields folder, after downloading and
unzipping the samples following the instructions in Sect. 3.2.

Uncomment the appropriate line near the top of LFDemoBasicFiltGantry to select
from the 12 input light fields.

Examples of filtering output are shown in Figs. 5, 6, and 7.
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Figure 5: Three examples of filtering Lytro imagery: the shift-and-sum filter
performing planar focus on the foreground window (left) and on the Lorikeet
(center), and a hyperfan filter performing volumetric focus to pass the Lorikeet
and background building while rejecting the foreground window (right, compare
with Fig. 3).

Figure 6: Three examples of filtering gantry imagery: the shift-and-sum filter
performing planar focus (left), the hyperfan filter performing volumetric focus
(center), and the max between two hyperfan filters, focusing simultaneously on
two planes (right).

Figure 7: Examplex of filtering Lytro Illum imagery, showing the input (left)
and shift-and-sum filter performing planar focus (right).
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3.4 Running the Small Sample Calibration

3.4.1 Calibrating

The example below assumes you’ve completed the Decoding tour above, including
generating the white image database. The small calibration dataset employed here
is intended only to quickly demonstrate operation of the toolbox, and has several
shortcomings in terms of effectively calibrating the camera:

❼ The checkerboard is too large for sufficiently short-range poses – a lenslet-based
camera has a small spatial baseline, and calibrating this baseline benefits from
close-up poses

❼ The checkerboard is not very dense – more corners would be appropriate

❼ There is insufficient diversity in the checkerboard poses – ten or more diverse
images would be appropriate

More realistic (and larger) datasets are available at http://marine.acfr.usyd.

edu.au/plenoptic-imaging. Good results have been obtained using a 19 × 19 grid
with a 3.6 mm spacing, with at least ten diverse poses.

Figure 8: Left: Example of a decoded checkerboard image – no colour correc-
tion is necessary and rectification should not be applied; Right: Example of
checkerboard corners automatically fit to the checkerboard in the first step of a
calibration.

1. Download the small sample calibration from http://www-personal.acfr.

usyd.edu.au/ddan1654/PlenCalSmallExample.zip. Decompress to your

Samples/Cameras/A000424242/ folder:
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Samples Top level of samples
Cameras Stores info for one or more cameras

A000424242 The camera used to measure the samples
CalZoomedOutFixedFoc A single calibration result
PlenCalSmallExample The newly-added calibration

WhiteImages White images for the sample camera
Images Sample light field images

2. Run LFUtilDecodeLytroFolder to decode the calibration light fields. From
within Matlab cd into the top level of the samples folder, then use the command

LFUtilDecodeLytroFolder( ...

'Cameras/A000424242/PlenCalSmallExample/');

This should find and decode the calibration checkerboard images. Note that
colour-correction is omitted as it is not required, and rectification would inval-
idate the results. A thumbnail of one of the decoded checkerboard images is
shown in Fig. 8.

3. Run LFUtilCalLensletCam to run the calibration. This function automat-
ically progresses through all the stages of calibration. Use the commands

CalOptions.ExpectedCheckerSize = [8,6];

CalOptions.ExpectedCheckerSpacing_m = 1e-3*[35.1, 35.0];

LFUtilCalLensletCam( ...

'Cameras/A000424242/PlenCalSmallExample', CalOptions);

These options tell the calibration function that the checkerboard spacing is
35.1 × 35.0 mm, and that there are 8 × 6 corners. Note that edge corners are
not included in this count, so a standard 8× 8 square chess board yields 7× 7
corners. These values are available in the README file that came with the cal-
ibration sample. Calibration automatically proceeds through corner identifica-
tion, parameter initialization, parameter optimization without lens distortion,
then with lens distortion, and a final stage of parameter refinement. These are
described in more detail in Sect. 5.

During the parameter initialization step, a pose estimate display is drawn re-
sembling that shown in Fig. 9. This display is updated throughout the remain-
ing stages, reflecting the refinement of the pose and camera model estimates.
Reprojection errors are also shown in the textual output. Typical final root
mean squared error (RMSE) values for the small calibration example are in the
vicinity of 0.2 mm.

The ultimate product of the calibration process is the calibration information
file, CalInfo.json, which contains pose, intrinsic and distortion parameters, as
well as the lenslet grid model used to decode the checkerboard light fields.

3.4.2 Validating

One way of validate a calibration is to rectify the checkerboard images. The process
closely resembles the rectification step described in the Decoding tour:

1. Run LFUtilProcessCalibrations to add the newly-completed calibration to
the calibration database. Note from the output of that function that the small
calibration example is very close to the sample calibration provided with the
sample pack, differing only by a few focus steps.
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Figure 9: The estimated camera pose display; Left: After parameter initial-
ization, and Right: After completion of a calibration; Gray: initial estimate,
Green: optimized without distortion, Blue: optimized with distortion, and Red:
after refinement.

2. Copy all the files from Cameras/A000424242/PlenCalSmallExample/01 into a
new folder, Samples/Images/PlenCalSmallExample. This will allow rectifica-
tion of the images while maintaining the unrectified versions for comparison.

3. Run LFUtilDecodeLytroFolder to rectify the images. Use the command

DecodeOptions.OptionalTasks = 'Rectify';

LFUtilDecodeLytroFolder('Images/PlenCalSmallExample', ...

[], DecodeOptions);

Examining the textual output, notice that the rectification has automatically
selected the small sample calibration for these images, based on their zoom and
focus settings.

A visual inspection of the rectified images probably shows poor results, due to
the limitations of the small calibration dataset.

3.4.3 Cleaning Up and Validating

Remove the calibration file generates by deleting CalInfo.json from
Cameras/A000424242/PlenCalSmallExample and re-run LFUtilProcessCalibrations. Re-
peating the above validation procedure with the default sample calibration in place
yields more reasonable validation results, such as those shown in Fig. 10, despite a
slight mismatch in camera parameters.
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Figure 10: A rectified checkerboard; See also Fig. 4. More complete datasets
are explored in [1].

3.5 Beyond the Samples:
Working with Your Own Light Fields

Processing images from your own camera closely mirrors the examples covered so far.
First, create a new folder parallel to the Cameras/A000424242 folder, to contain your
camera’s white images and any calibrations you perform. A good naming convention
is to name this folder to match your camera’s serial number. Next, create a sub-folder
for your white images. Your tree structure should now look like:

Samples Top level of samples
Cameras Stores info for one or more cameras

A123412123 Your camera’s top level folder

WhiteImages Your camera’s white images

A000424242 The camera used to measure the samples
CalZoomedOutFixedFoc A single calibration result
WhiteImages White images for the sample camera

Images Sample light field images

Following the procedure described in Appendix A, extract your camera’s white
images and place them in the newly created WhiteImages folder. Any calibrations you
perform should sit in their own folders alongside the WhiteImages folder.

From the top level of the samples folder, run LFUtilProcessWhiteImages to process
your camera’s white images. The resulting grid models will be added to the white
image database, and automatically applied to pictures taken with your camera.

You may end up with a complex tree structure with many sub-folders under Images.
LFUtilProcessWhiteImages will search this structure recursively, decoding anything it
identifies as a light field.

To rectify your own images, you will need to calibrate your camera. Follow
the procedure described in the tour above, except using your own images stored
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within your own camera’s folder. Your first calibrations might, for example, go in
Samples/A123412123/CalZoomedOut.

4 Decoding in Detail

4.1 Overview

This toolbox decodes lenslet-based light field images into a 4D light field structure
following the decode process described in [1]. At its core, the inputs to this process
are a white image and a lenslet image. The white image is an image taken through
a diffuser, and is used to correct for vignetting (darkening near the edges of images),
and to build a grid representing the locations of lenslet centers.

Each Lytro camera comes preloaded with a unique set of white images correspond-
ing to a variety of zoom and focus settings. When decoding a light field picture, the
white image is selected which most closely matches the zoom and focus settings of the
camera when it took the picture. The white images can be extracted from the Lytro
files following the instructions in Sect. A.1.

Before decoding light field pictures, the white images must be analyzed. This
builds a series of grid models, one per white image, and a database listing available
images. This only needs to be done once per camera, and the utility function LFUtil-
ProcessWhiteImages is provided to automate the process.

For each picture to decode, a white image appropriate to that picture is selected
based on the camera serial number, and zoom and focus settings, and the white image
and raw lenslet image are passed to a decoding function which builds the 4D light field.
The function LFSelectFromDatabase is provided to aid in selecting the appropriate
white image for a light field, as demonstrated by LFLytroDecodeImage.

The following sections describe this workflow in more detail, and assumes that you
have extracted the white images and copied light fields into a folder structure similar
to that used in the quick tour, above. See Appendix A for details on dealing with the
Lytro files.

4.2 Analyzing White Images

Each white image needs to be analyzed once in order to match a grid model to the
lenslet locations. The utility LFUtilProcessWhiteImages automatically builds a grid
model for each white image in your white image folder. If you wish to store your white
images in a structure other than the default, simply change the WhiteImageDatabasePath
variable in LFUtilProcessWhiteImages to point to your white images folder, or pass
an argument FileOptions with the WhiteImageDatabasePath field set.

In the F01 camera, the white images come in two exposure levels. Both exposures
are not needed, and only the brighter of the two is used by this toolbox. An exami-
nation of the white images also generally reveals some extra, very dark images. These
are not useful, and are automatically ignored.

As LFUtilProcessWhiteImages steps through the white images, it saves the grid
models as .grid.json files in the white images folder. It simultaneously builds a
database keeping track of the serial number, zoom and focus settings associated with
each white image. It saves this as WhiteFileDatabase.mat. This is utilized by the
function LFSelectFromDatabase to select the white image appropriate for decoding a
given light field picture.
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4.3 Decoding a Lenslet Image

The decode procedure is demonstrated in LFLytroDecodeImage. This script first loads
a lenslet image and associated metadata, selects the appropriate white image using
LFSelectFromDatabase, then passes the lenslet image, metadata and white image to
LFDecodeLensletImageSimple, which handles the bulk of the work.

LFSelectFromDatabase selects the appropriate white image based on serial num-
ber, zoom and focus settings. Presently zoom is prioritized over focus, though whether
this is the optimal approach is an open question.

LFDecodeLensletImageSimple proceeds as described in [1] to decode the light field.
This involves demosaicing, devignetting, transforming and slicing the input lenslet
image to yield a 4D structure. More sophisticated approaches exist which combine
steps into joint solutions, and they generally yield superior results, particularly near
the edges of lenslets. The approach taken here was chosen for its simplicity and
flexibility.

Some of the specifics of the decode process can be controlled, see the help text for
the above functions.

4.4 Structure of the Decoded Light Field

A light field is fundamentally a four-dimensional structure. Roughly speaking, each
pixel corresponds to a ray, and two dimensions define that ray’s position, while the
other two define its direction. In the case of the the images measured by a lenslet-
based camera such as the Lytro, two dimensions select a lenslet image, and two select
a pixel within that lenslet’s image. By the convention followed in [1], the lenslet is
indexed by the pair k, l (k is horizontal), and the pixel within the lenslet is indexed
by i, j (i is horizontal).

The Lytro’s lenslets each yield approximately 9×9 useful pixels, and so the output
of LFUtilDecodeLytroFolder has a size approximately 9 in i and j. Similarly, after
removing the hexagonal sampling associated with the hexagonal lenslet array, the
Lytro imagery yields approximately 380 pixels in both k and l. The actual number of
samples depends on how the lenslet grid is aligned with the sensor, and will vary by
camera.

Examining the output of LFDecodeLensletImageSimple, we see that it yields a
light field LF which is a 5D array of size around 9 × 9 × 380 × 380 × 3. Importantly,
the indexing order for LF is j, i, l, k, c, where c is the RGB colour channel.

To examine a slice through the k and l dimensions, you might use the command
imshow(squeeze(LF(5,5,:,:,:))), yielding a view from the center of the i and j
dimensions. This looks very much like the examples shown in Fig. 2.

To examine a slice through the i and j dimensions, you might use the command
imshow(squeeze(LF(:,:,380/2,380/2,:))), yielding an output similar to that shown
in Fig. 11. Notice that this shows the shape of the image under a lenslet, and features
darkened corner pixels that contain little or no information. Methods exist for “filling
in” these regions of the light field, and may be explored in future releases of the
toolbox.

LFDecodeLensletImageSimple provides a weight channel LFWeight, which repre-
sents the confidence associated with each pixel. A slice in i and j of such a channel is
shown in Fig. 11. The weight channel is useful in filtering applications which accept a
weighting term.
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Figure 11: Light field for Sample 1 and its associated weight channel viewed in
the i and j dimensions.

Note that LFLytroDecodeImage tacks the weight channel onto the variable LF to
yield a four-channel structure, and it is in this four-channel format that LFUtilDecode-
LytroFolder saves light fields. This is a convenient format for the light field, as the
weight channel is often useful in processing light fields. LFHistEqualize, for example,
uses this channel to ignore zero-weight pixels. It is likely that the weight channel will
be useful in filtering operations in future versions of the toolbox.

To work with a light field without the weight channel – for example to visualize
slices – simply index the first three channels, as in
imshow(squeeze(LF(5,5,:,:,1:3)))

5 Calibration in Detail

The LFUtilCalLensletCam automatically progresses through the following calibration
stages:

Checkerboard corner identification. Corner finding is the most time-consuming
step, especially for dense checkerboards. First the zoom and focus settings of all the
input images are compared, and a warning message is displayed if any of them differ.
Next corners are automatically located in 2D slices of the checkerboard light fields.
Output resembling that shown on the right in Fig. 8 allows visual confirmation that
the extracted corners are sensible. It is normal that not all sub-images will have
all corners successfully identified, due to vignetting and bleedthrough between lenslet
images. Checkerboard corners for each image are stored in * CheckerCorners.mat

files alongside each input file.
Initialization of pose and intrinsic parameters. This begins by summarizing the

checkerboard corner information into a single file at the top level of the calibration,
Cameras/A000424242/PlenCalSmallExample/CheckerboardCorners.mat. Initial pose
and intrinsic estimates are then computed and stored at the same level, in the cali-
bration info file CalInfo.json.

Optimization without distortion. Intrinsics and poses are optimized, and the
results are saved to CalInfo.json. The pose estimate display is updated with the new
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pose estimates. The textual display shows the progress of the optimization, including
the RMSE before and after each stage of the optimization. Each optimization stage
also shows a Matlab-generated optimization display, showing first-order optimality –
see Matlab’s documentation for more on this.

Optimization with distortion. This completes the camera model by including
lens distortion. Again the pose estimate display and textual output are updated.

Refinement. This simply repeats optimization with distortion to further refine
the camera model and pose estimates.

5.1 Calibration Results

The calibration results are stored in the calibration information file, CalInfo.json.
The calibrated estimates are described in detail in [1], and include:

❼ Lenslet grid model: describes the rotation, spacing and offset of the lenslet
images on the sensor.

❼ Plenoptic intrinsic model: a 5 × 5 matrix H relating a pixel index n =
[i, j, k, l, 1]T to an undistorted ray φu = [s, t, u, v, 1]T, following φu = Hn.

❼ Distortion parameters: describe radial distortion in ray direction, employing
the small angle assumption such that θ = [θ1, θ2] ≈ [dx/dz, dy/dz] for each ray.
The five distortion parameters are b = [bs, bt] and k = [k1..3], where b captures
decentering and k are radial distortion coefficients. The complete distortion
vector is in the order d = [b,k]. If θu and θd are the undistorted and distorted
2D ray directions, respectively, then
θd = (1 + k1r

2 + k2r
4 + · · · )

(

θu
− b

)

+ b, r =
√

θ2s + θ2t .

Because the lenslet grid model forms part of the calibration, it is crucial that light
fields to which a calibration is applied be decoded with the same grid parameters used
during the calibration process. The software performs a rudimentary check and raises
a warning if the lenslet grid model used to rectify a light field differs significantly from
that used to decode it.

5.2 Rectification Results

Finding the ray to which a light field sample corresponds in an unrectified light field
is relatively complex, requiring application of both the intrinsic matrix and distortion
model. Once a light field is rectified, however, the rectified light field’s intrinsic matrix
directly relates samples to rays, as in φ = Hn. The rectified intrinsic matrix is saved
in each rectified light field as RectOptions.RectCamIntrinsicsH.

As a simple example, for the small calibration example dataset,

n = [1,1,1,1,1]';

p = RectOptions.RectCamIntrinsicsH * n;

Results in the ray p = [0.0015, 0.0015,−0.34,−0.34, 1]T. Similarly,
n = [5, 5, 190.5, 190.5, 1]′ yields the ray p = [0, 0, 0, 0, 1]T, because this n corresponds
to the center of the sampled light field (recall the light field size is 9× 9× 380× 380),
and so corresponds to the central ray.
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5.3 Controlling Rectification

Rectification accepts as an optional parameter the desired intrinsics of the rectified
light field – i.e. you can specify the value you want in RectOptions.RectCamIntrinsicsH.
By default the calibrated intrinsic matrix takes on a conservative value yielding square
pixels in s, t and in u, v. You may wish to change this if, for example, non-square pixels
are desired.

New in Version 0.3 is a helper function for building this matrix, LFCalDispRect-
Intrinsics. The recommended usage pattern is to load a light field, call LFCalDis-
pRectIntrinsics once to set up the default intrinsic matrix, manipulate the matrix,
then visualize the manipulated sampling pattern prior to employing it in one or more
rectification calls. Assuming IMG 001 has been decoded but not rectified, a typical
process might look like this:

load('Images/IMG_0001__Decoded.mat');

RectOptions = ...

LFCalDispRectIntrinsics( LF, LFMetadata, RectOptions );

this loads the light field then sets up the default intrinsic matrix, generating a display
showing the sampling pattern, as in Fig. 12.

If we wanted to sample closer to the horizontal u edges of this light field, at the
cost on working with non-square pixels, we could increase H(3, 3), as in:

RectOptions.RectCamIntrinsicsH(3,3) = ...

1.1 * RectOptions.RectCamIntrinsicsH(3,3);

RectOptions.RectCamIntrinsicsH = LFRecenterIntrinsics( ...

RectOptions.RectCamIntrinsicsH, size(LF) );

LFCalDispRectIntrinsics( LF, LFMetadata, RectOptions );

This increases the extent of the samples along u, then re-centers the sampling via
LFRecenterIntrinsics, then displays the resulting sampling pattern, as shown in Fig. 12.

Finally, the appropriate call to LFUtilDecodeLytroFolder will rectify multiple light
fields with the requested intrinsic matrix:

DecodeOptions.OptionalTasks = 'Rectify';

LFUtilDecodeLytroFolder([], [], DecodeOptions, RectOptions);

Note that the same matrix can be applied to any light field, but that the resulting
sampling pattern will differ for different cameras and focus / zoom settings. Fig. 13
shows the result of applying the example rectifications from Fig. 12 – note that more
of the recorded imagery is visible in the second image, but its non-square pixels must
be accounted for in subsequent processing steps.
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Figure 12: The default and adjusted sampling patterns. Here the sampling
pattern has been stretched horizontally, incorporating more of the measured
image, but yielding rectangular pixels. The following figure shows the result of
applying each of these.
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Figure 13: Rectification applied with the default and adjusted sampling patterns
described in the previous figure.
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Appendix A Working with Lytro Files

As of version 0.3 of the toolbox, an external tool is no longer required to extract white
images, pictures or metadata from the files generated by the Lytro software.

A.1 Extracting White Images

Every camera has a unique database of white images needed in decoding. On Windows
machines, the white image data is found in a folder of the form

<drive_letter>:\Users\<username>\AppData\Local\Lytro\cameras\ ...

sn-<serial_number>

while on a MAC, the relevant location is

/Users/<username>/Lytro.lytrolib/cameras/sn-<serial_number>

A concrete example on a Windows machine is

C:\Users\Bob\AppData\Local\Lytro\cameras\sn-A000424242

The Lytro Illum can save its white images in a compressed file on its SDCard
as part of the “pairing process” – see the Lytro literature on creating this “Pairing
Data”. The data folder or pairing data file contain files named data.C.0, data.C.1
and so on. These are in a Lytro-specific storage format, and can be unpacked using
LFUtilUnpackLytroArchive.

For example, after uncompressing the pairing data or copying the contents of the
data folder into Cameras/<YourSerial>/WhiteImages, run LFUtilUnpackLytroArchive
from the top of the Samples folder. The function will by default search the Cameras

folder for all archives and unpack them.
Of the resulting extracted files, those we are interested in have names like

MOD_0000.RAW

MOD_0000.TXT

MOD_0001.RAW

MOD_0001.TXT

...

The raw files are white images corresponding to a variety of zoom and focus set-
tings, while the txt files contain the metadata we require to sort out which is which.
The other files contain a wealth of information about your Lytro, but are not utilized
in this revision of the toolbox. Once unpacked, you may safely remove the copied
data.C.* files.

A.2 Locating Picture Files

This version of the toolbox can read Lytro LFP files directly, using the function LF-
ReadLFP. The toolbox is also compatible with .raw files extracted using an external
LFP tool.

Lytro Desktop version 4 and higher make it easy to find LFP files, as they are
stored in your operating system’s default Pictures folder – look for a folder of the form
My Pictures/Lytro Desktop/Libraries/Lytro Library.lytrolibrary/. The pic-
ture library takes on a complex directory structure, with many sub-folders. You may
copy this structure directly into your working folder – the toolbox will recursively
search sub-folders when decoding light fields.

The desktop software can also export light fields to a location of your choice.
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If working with an Illum, you may copy the files straight off the camera, as it
directly exposes its file system over USB.

If you’re running an older versions of the Lytro Desktop software, Lytro picture
files may be found in an images folder alongside the cameras folder where the white
images are stored. i.e. on a Windows machine the default location is

<drive_letter>:\Users\<username>\AppData\Local\Lytro\images\*

and on a MAC it’s

/Users/<username>/Lytro.lytrolib/images/*

where the ‘*’ at the end takes on numerical values, like 01, 02 and so on.

A.2.1 LFP, LFR, lfp or lfr?

The Lytro LFP is a container format, and may contain one of several types of data. The
files containing light fields are generally obvious based on their size – about 16 MBytes
for the F01, and 55 MBytes for the Illum. The file extension varies based on the source
of the files, with exported files, on-camera files and image library files variously taking
on the four variants of extension shown in this section’s heading.

By default, LFUtilDecodeLytroFolder recursively searches for files with any of
these extensions, as well as the raw files employed by previous toolbox versions, and
decodes anything it can make sense of. Focal stacks and other files are also stored as
.lfp files, and LFUtilDecodeLytroFolder will ignore these files.

A.2.2 Thumbnails

Thumbnails are built into some LFP files. The function LFUtilExtractLFPThumbs
will find thumbnails and save them to disk.
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Appendix B Function Reference

This is a quick list of top-level functions organized by task. Please refer to the docu-
mentation included in each function for further information, and the SupportFunctions
folder for the inner workings of the toolbox.

Several of the functions begin by defining default values for all of their arguments,
as in LFUtilDecodeLytroFolder. As a result, these can either be called as functions
or run directly without any arguments. When calling without arguments, edit the
values in the code to match your desired settings. When calling as a function, it is
only necessary to pass those arguments and fields which differ from the defaults. Pass
an empty array [] to omit a parameter, and omit fields that are to take on default
values.

See the help for LFUtilDecodeLytroFolder for examples of this parameter-passing
scheme.

Decoding / Input

LFLytroDecodeImage

Decode a Lytro image from an LFP or raw file. Can be called directly to
decode a single image into memory, or called indirectly through LFUtilDe-
codeLytroFolder.

LFReadGantryArray

Loads gantry-style light fields, e.g. the Stanford light fields found at http:

//lightfield.stanford.edu.

LFUtilDecodeLytroFolder

Utility for decoding, colour correcting and rectifying Lytro imagery. Can
process multiple light fields; recursively searches folder structures; accepts
filename specifications including wildcards. Automatically selects appropriate
white images and calibration files from multiple cameras across multiple zoom
and focus settings. Will incrementally apply operations to files so that, for ex-
ample, previously-decoded light fields can be incrementally colour-corrected,
rectified or both without needing to repeat operations. Results are saved to
disk. See Figs. 2, 4 and 10 for example output.
Demonstrates LFLytroDecodeImage, LFColourCorrect, LFHistEqualize, and
LFCalRectifyLF.
Decoding relies on a white image database having been constructed by
LFUtilProcessWhiteImages, and rectification similarly relies on a calibration
database having been created by LFUtilProcessCalibrations.

LFUtilProcessWhiteImages

Processes a folder populated with white images, generating a grid model
(.grid.json) for each, and a white image database (WhiteFileDatabase.mat)
used to select the white image appropriate to a light field. Dark images are
automatically detected and skipped.
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Filtering

LFBuild2DFreqFan NEW

Construct a 2D fan filter in the frequency domain. Apply this filter with
LFFilt2DFFT.

LFBuild2DFreqLine NEW

Construct a 2D line filter in the frequency domain. The cascade of two line
filters, applied in s,u and in t,v, is identical to a 4D planar filter, e.g. that
constructed by LFBuild4DFreqPlane. Apply this filter with LFFilt2DFFT.

LFBuild4DFreqDualFan NEW

Construct a 4D dual-fan filter in the frequency domain. Apply this filter with
LFFilt4DFFT.

LFBuild4DFreqHypercone NEW

Construct a 4D hypercone filter in the frequency domain. Apply this filter
with LFFilt4DFFT.

LFBuild4DFreqHyperfan NEW

Construct a 4D hyperfan filter in the frequency domain. This is useful for
selecting objects over a range of depths from a lightfield, i.e. volumetric
focus. Apply this filter with LFFilt4DFFT.

LFBuild4DFreqPlane NEW

Construct a 4D plane filter in the frequency domain. This is useful for se-
lecting objects at a single depth from a lightfield, and is similar in effect to
refocus using, for example, the shift sum filter LFFiltShiftSum. Apply this
filter with LFFilt4DFFT.

LFDemoBasicFiltLytroF01 NEW

Demonstrates some of the basic filters on Lytro F01-captured imagery.

LFDemoBasicFiltIllum NEW

Demonstrates some of the basic filters on Lytro Illum-captured imagery.

LFDemoBasicFiltGantry NEW

Demonstrates some of the basic filters on Stanford light field archive light
fields.

LFFilt2DFFT NEW

Applies a 2D frequency-domain filter to a 4D light field using the FFT.

LFFilt4DFFT NEW

Applies a 4D frequency-domain filter using the FFT.

LFFiltShiftSum NEW

The shift sum filter is a spatial-domain depth-selective filter, with an effect
similar to planar focus.
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Image Adjustment

LFColourCorrect

Applies a colour balance vector, an RGB colour correction matrix, and gamma
correction. Usage is demonstrated in LFUtilDecodeLytroFolder.

LFHistEqualize

Adjusts the brightness of a light field based on histogram equalization. Capa-
ble of handling colour and monochrome images – colour images are converted
to HSV, and the value channel is equalized. Capable of handling different
input dimensionalities including 2D images and 4D light fields. If a weight
channel is present as a fourth colour channel, it is used to ignore zero-weight
pixels. Usage is demonstrated in LFUtilDecodeLytroFolder.

Visualization

LFDisp NEW

Convenience function to display a static, 2D slice of a light field. The cen-
termost image is taken in s and t. Also works with 3D arrays of images.

LFDispMousePan

Display 2D slices of the light field with a rudimentary parallax effect. Click
and drag in the image to change the point of view. An optional parameter
controls the display size. Note that darkening at the edges of unfiltered light
fields mean that the effect is best near the center of the spatial range. For
an automatically animated display, see LFDispVidCirc. The function re-uses
previously-opened light field display windows. Note that changing display size
requires that the display window be closed prior to calling this function.

LFDispVidCirc

Animated display showing 2D slices of the light field, similar to LFDisp-
MousePan except the motion is preset to a circular path. Optional parame-
ters include the radius of the circular path, animation speed, and display size.

LFFigure

Replacement for Matlab’s “figure” which doesn’t steal focus, originally sfigure
by Daniel Eaton.
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Calibration

LFCalDispEstPoses

Visualize camera pose estimates. Called by LFUtilCalLensletCam.

LFCalDispRectIntrinsics

Helper for setting up and visualizing intrinsics requested in rectification, see
also LFRecenterIntrinsics.

LFCalRectifyLF

Applies a calibration to rectify a light field. The desired intrinsic matrix
can be provided, or computed automatically from the calibrated intrinsics.
Demonstrated by LFUtilDecodeLytroFolder.

LFRecenterIntrinsics

Recenters a light field intrinsic matrix, useful for modifying intrinsics re-
quested in LFCalRectifyLF, see LFCalDispRectIntrinsics.

LFUtilCalLensletCam

Runs through all the steps of a lenslet-based camera calibration.

LFUtilProcessCalibrations

Builds a database of calibrations to allow selection of the appropriate calibra-
tion for a given light field.

File I/O

LFFindFilesRecursive

Recursively searches a folder for files matching one or more patterns. Re-
fer to this to understand the path parameters to LFUtilDecodeLytroFolder,
LFUtilExtractLFPThumbs and LFUtilUnpackLytroArchive.

LFReadLFP

Reads Lytro lfp/lfr light field files.

LFReadMetadata

Reads json files.

LFReadRaw

Reads 10, 12 and 16-bit raw image files.

LFWriteMetadata

Writes json files.
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Utility / Convenience

LFMatlabPathSetup

Sets up the Matlab path to include the LF Toolbox. This must be re-run
every time Matlab restarts, so consider adding a line to startup.m as shown
in Sect. 2.

LFUtilUnpackLytroArchive

Extracts white images and other files from a multi-volume Lytro archive.

LFUtilExtractLFPThumbs

Extracts thumbnails from LFP files and writes them to disk.
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