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Abstract— We describe an interactive approach for visual
object analysis which exploits the ability of a robot to ma-
nipulate its environment. Knowledge of objects’ mechanical
properties is important in a host of robotics tasks, but their
measurement can be impractical due to perceptual or mechan-
ical limitations. By applying a periodic stimulus and matched
video filtering and analysis pipeline, we show that even stiff,
fragile, or low-texture objects can be distinguished based on
their mechanical behaviours. We construct a novel, linear
filter exploiting periodicity of the stimulus to reduce noise,
enhance contrast, and amplify motion by a selectable gain
– the proposed filter is significantly simpler than previous
approaches to motion amplification. We further propose a set of
statistics based on dense optical flow derived from the filtered
video, and demonstrate visual object analysis based on these
statistics for objects offering low contrast and limited deflection.
Finally, we analyze 7 object types over 59 trials under varying
illumination and pose, demonstrating that objects are linearly
distinguishable under this approach, and establish the viability
of estimating fluid level in a cup from the same statistics.

I. INTRODUCTION

The need to interact with deformable objects is legion

in robotics, from domestic applications like shopping and

food preparation to agricultural, manufacturing and indus-

trial applications [1]–[3]. Compliance challenges classical

approaches and strains rigid-body assumptions. A rigid ge-

ometric view, while deeply informative, neglects the rich

spectrum of mechanical behaviours found in physical objects.

Measurement through mechanical sensing can be expen-

sive or prohibitive, as appropriate sensors are not universally

deployed, and contact forces for fragile or highly compliant

objects can be difficult to capture. Cameras, on the other

hand are widely deployed, making the incremental cost of

visual object analysis negligible. When an object vibrates

or deflects, its motion reveals details of its mechanical

properties. Motion magnification provides a mechanism for

capturing even very small displacements [4]–[6]. This makes

visual sensing appropriate for analyzing a wide range of

objects, from soft foams to stiff plastics.

We propose a method for analyzing deformable objects

through mechanical stimulation and visual sensing. The bulk

of the complexity in this approach is algorithmic, limiting

hardware requirements to a camera and any system capable

of periodic stimulation of the scene – a capability which
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Fig. 1. Interactive, Visual Analysis of an Object’s Material Properties.
Baxter squeezing a range of items (top-left), with an external camera
observing (top-right). By applying a known, periodic stimulus, we show
that matched video filtering and simple statistics can be used to distinguish
objects based on material properties, even for stiff, fragile, or low-texture
objects. (bottom) Example input frames for three beverage container types:
C1 has little texture, C3 shows only small deformations, and C1 and C2 are
easily crushed.

most robots that interact with their environments have. Fig. 1

depicts a Baxter robot applying the proposed method to

analyze a set of deformable objects.

The key contributions of this work are: combining con-

trolled stimulus with computational imaging to analyze the

mechanical properties of even challenging stiff, fragile or

low-texture objects, without the use of specialized hardware;

a linear noise reducing and motion amplifying filter which

represents a significant simplification over prior approaches

to motion magnification; and a set of statistics derived from

optical flow which allow the mechanical properties of objects

to be distinguished based on visual observations.

The proposed approach has a range of potential applica-

tions including informing prehensile perception of a compli-

ant object of unknown physical state. An illustrative case is

the problem of determining the fill level of a non-transparent

cup. While the cup’s static appearance remains unchanged,

its global stiffness changes with fluid level. The mode shape

of the cup will also vary, much like the resonant cavity of

a musical instrument, and this change can be observed via

the ratio of longitudinal to lateral visual deformation, akin

to Poisson’s ratio. We demonstrate that this statistic can be

used to visually determine the cup’s fill level, which can in

turn inform a traditional manipulation strategy [7].

Our method is compatible with force sensing and can

provide an estimate of inertial state before lifting, supporting

grasping strategies that try to “feel” the grip [8]. It can also

help compensate for drift/error in cases where less precise



instruments are available, e.g. where force sensing resistors

are employed, or when the finger/wrist is obstructed and

unable to make adequate contact for load transference and

sensing. Our approach is also compatible with a decision-

making framework for varying excitation motions in the

exploration and exploitation of an object [9].

II. RELATED WORK

Interactive object recognition is a well studied task with a

range of applications. In addition to direct sensing (e.g. Syn-

touch BioTacs), two main threads have emerged for handling

deformable objects: learning approaches [1] and proprio-

ceptive system identification [10]. Proprioceptive methods

typically employ exploratory behaviours in combination with

sensing to analyze objects. While such approaches can iden-

tify an object’s mass and moment of inertia, many methods

assume near-rigid body objects [11], [12].

Data-driven approaches have been extended to discern re-

lationships between known deformable objects and observed

reactions. Approaches include that of Gemici and Saxena [2],

who perform predesignated actions with a tool (fork and

knife) to learn a haptic representation of the mechanical

properties of a set of known deformable objects using

Dirichlet processes. Other avenues employ machine learning

to augment low-resolution, time-varying tactile sensors. For

example, Bhattacharjee, et al. [13] estimate object properties

from incidental touch using Hidden Markov Models. These

methods require extensive prior data and careful training to

allow generalization across a diversity of novel cases.

Other approaches employ sound through contact or ma-

nipulation such as dropping, shaking, or crushing [13]–[15].

Inference is drawn in the frequency domain, e.g. between

sound characteristics, and a discrete set of objects as classi-

fied using machine learning [16].

Deformable object analysis also has parallels with non-

destructive testing and material property estimation [6]. Em-

ploying finite-element or point-mass and spring models [8],

[17], displacement and compliance can be related, ultimately

yielding metric estimates. In general, these methods are batch

(off-line), designed for uncluttered environments, and seek a

strong prior.

While existing strategies are often motivated by discrete

manipulation tasks such as counting, arranging, sorting,

and pile singulation [18], [19], they can also sometimes

inform the handing of deformable 3D objects. In general

this is more nuanced than planar grasping, for while the

compliance can simplify some operations by deforming to

compensate for errors, precision grasping and pickup of soft

materials requires at least approximate object properties for

anticipating gravity loading [7], [8].

Our approach brings together dynamic interaction and

computational imaging to estimate the properties of de-

formable objects. This combination is powerful because

video analysis can leverage the strong prior information

afforded by intentional manipulation of the scene. In contrast

to prior work, this allows targeted and isolated inspection of

an object in the presence of clutter and interference.

Fig. 2. The robot applies a time-varying stimulus d(t) to a compliant object
while observing the video sequence x(u, v, n). The video is filtered to
enhance contrast and motion, allowing fragile, stiff and low-contrast objects
to be analyzed. The optical flow of the filtered sequence is decomposed
into orthogonal components which yield a set of flow statistics. These in
turn drive object and material discriminations, and ultimately decisions on
manipulation strategy. Feedback to d(t) indicates a potential to modify the
stimulus to yield more information, e.g. starting gently and increasing as
appropriate.

We build on recent motion magnification approaches [4],

[20], which employ sophisticated filter banks for estimating

motion. Our approach is simpler, employing a single linear

filter that increases signal-to-noise ratio (SNR) and amplifies

motion. The proposed filter is easily parallelized, making

it appropriate for real-time embedded deployment, and we

show it to be very effective despite its simplicity.

III. INTERACTIVE COMPUTATIONAL IMAGING

In computational imaging light is often considered in

terms of the plenoptic function, which describes rays as a

function of position, direction, and time, as seen by a passive

observer [21]. We build on this by allowing the observer to

interact with the scene, yielding a time-varying response to

intentional stimulus. This effectively adds a dimension of

mechanical interaction to the plenoptic function.

Fig. 2 summarizes the proposed approach. The robot

applies a stimulus d(t), observing an object’s response using

a camera. This yields a video x(u, v, n), where u, v are

pixel indices and n is the frame index. Some objects are

fragile and will only tolerate small deformations, e.g. paper

cups that are easily crushed. Other objects are stiff, and

show little deformation even under strong stimulus. Finally,

some objects have little contrast, making their deformation

difficult to observe. These factors can make video analysis

challenging, and so we propose a spatio-temporal filter,

matched to the stimulus, that enhances contrast and amplifies

motion while rejecting noise. The stimulus and matched filter

are described in Sect. IV.

Following filtering we estimate optical flow and extract

a set of statistics based on decompositions of flow into

orthogonal components. This process is described in Sect. V.

Finally, the optical flow statistics drive decisions about how

the object should be manipulated. In this work we employ

principal component analysis (PCA) to distinguish materials

and object properties, as seen in Sect. VI. We leave as future

work the formulation of manipulation strategies based on

these discriminations.



(a) Hn (b) Hlow

(c) Hhigh (d) H

Fig. 3. Constructing the motion amplification filter. All figures are rota-
tionally symmetric about ωn; darker represents higher magnitude: (a) Hn

contains all periodic motion with the prescribed period; (b) Hlow contains
all motion slower than a prescribed rate; (c) Hhigh contains all motion
faster than a prescribed rate; and (d) H , the overall filter removing fast
motion, passing slow motion, and amplifying periodic motion.

We envision the proposed method fitting into a broader

strategy in which the robot begins with a gentle stimulus,

varying it over time within predetermined safety limits, until

informative deformation is observed. Once sufficient infor-

mation is collected to characterize an object, a manipulation

strategy is formulated and applied.

IV. MODULATED STIMULUS AND MATCHED FILTERING

Visual characterization of material properties requires the

perception of both texture and motion. Consequently, ma-

terials that allow little deflection due to their stiffness or

fragility are difficult to analyze, as are those offering low

textural contrast. These scenarios offer too weak a signal to

overcome the camera’s resolution and noise limits.

Modulated stimulus and filtering allows us to overcome

these limitations. Assuming elastic material behaviour, a

cyclic, stationary stimulus will yield a cyclic, stationary

response at the same frequency, despite amplitude variations

associated with material behaviours such as natural frequency

and damping ratio. This allows us to design a filter which

increases the SNR, drawing out subtle textures, and at the

same time exaggerates small deflections through motion

amplification.

A. Periodic Motion

Our simplified approach to motion amplification is built

on a few key observations about periodic video. Assume a

sampled monochrome video sequence x(u, v, n), where u, v
are pixel indices and n is the frame index. For linear material

behaviours, a periodic stimulus with integer period T frames

will yield a periodic video,

x(u, v, n+ iT ) = x(u, v, n), i ∈ N0. (1)

The requirement for integer period T is easily approximated

for high frame rates, e.g. tens of frames per cycle or more.

A periodic video has a discrete Fourier transform (DFT)

X(ωu, ωv, ωn) which lies on a periodic frequency-domain

region of support (ROS)

ωn = ±kω0, k ∈ N, (2)

where ω0 = 1/T . This periodic ROS is sufficient to effect

a significant improvement in the SNR of periodic video:

noise will in general occupy the entire frequency spectrum,

so by building a filter Hn matching the periodic ROS, we

can reject much of this noise without affecting the dynamic

scene content.

An example periodic Hn is depicted in Fig. 3(a). In

this figure, darker regions correspond to higher amplitudes.

Because all the frequency spectra shown here are rotation-

ally symmetric about ωn, we denote the horizontal axis

ωr =
√

ω2
u + ω2

v .

B. Smooth Motion

It is well established that an image patch moving with

constant projected velocity appears on a tilted frequency-

planar ROS [22]. For projected velocity v = [vu, vv]
T

pixels/frame, the ROS is given by

vuωu + vvωv + ωn = 0. (3)

Stationary patches lie on the plane ωn = 0, and patches

moving with small velocities lie on a family of planes

forming small angles with ωn = 0. In fact, this family of

planes can be described as the outside of a wide cone aligned

with the ωn axis. Such a family, which we denote Hlow

to indicate low-velocity scene content, is shown in cross-

section in Fig. 3(b). By superposition, a scene comprising

many elements moving with small but different projected

velocities will also appear within Hlow.

A final observation is that patches with very high veloci-

ties, beyond what is possible for a given scene stimulus, will

lie on a frequency-cone ROS near the ωn axis, as depicted

in Fig. 3(c). This is useful as an additional tool for rejecting

noise, as we can exclude this Hhigh region from the signal

without adversely affecting the desired signal.

C. Combined Filter

Combining these observations we build a single-step linear

motion-amplifying and noise-rejecting filter:

H = Hlow +GHn(1−Hhigh −Hlow), (4)

where G represents the motion amplification gain, and the

term that it multiplies contains everything moving faster than

the minimum defined by Hlow, slower than the maximum

defined by Hhigh, and periodically as defined by Hn.

An example H is depicted in Fig. 3(d), for G = 4. The

ratio between the lighter Hlow and darker Hn reflects the

gain in motion. The tuneable parameters of the filter are the

minimum and maximum passband velocities, the period of

the modulated manipulation, the sharpness of the rolloff of

each component, and the gain G.

Note that by including Hlow we have retained but not

amplified slow motions. An alternative approach would be



to discard Hlow, passing perfectly stationary content in its

place. In practice we have found this unnecessary, but leave

its exploration as future work.

D. Gain Selection

A crucial parameter of the motion amplifying filter is the

gain G. In this work we manually fix G, but in practice

we expect that a robot exploring its environment would

take a more dynamic approach, for example slowly varying

G until a desired minimum level of periodic motion is

observed. If the gain is set too low, small and untextured

deformations will not be observable. If the gain is too

high, motion will suffer from saturation artefacts, ultimately

yielding inaccurate statistics.

V. DYNAMIC VISUAL MATERIAL PROPERTIES

Having filtered the video sequence and amplified its mo-

tion to a perceptible level, we wish to estimate a set of prop-

erties which are useful in robotics tasks. These properties

might be calibrated, metric, physically grounded quantities

such as stiffness k, Young’s modulus E, Poisson’s ratio ν,

and so on. Alternatively, raw visual quantities might directly

drive decision or estimation processes: “Is that paper cup

stiff enough to pick up?”, “How much deflection should be

applied when picking it up?”, and “What’s the best place to

grip it?” are all questions that might be addressed using this

method, without needing to establish calibrated quantities.

As proof-of-concept, we propose the use of well-

established machine learning techniques to associate visual

features with material or object behaviours. To this end,

we extract a set of features from video of the stimulated

scene, and employ these to cluster objects in a way that can

drive decisions. Although the visual features we extract are

not calibrated metric values, they are inspired by commonly

employed physical quantities such as Poisson’s ratio.

A. Optical Flow Components

Following the filtering and motion amplification described

in Sect. IV, we apply Matlab’s implementation of Lucas-

Kanade optical flow with Gaussian smoothing to obtain a

dense flow field V over the object’s visible surface. We then

extract a set of visual features based on decompositions of the

flow field into orthogonal components, as depicted in Fig. 4.

The first of these decompositions is relative to the point p

at the center of compression, and the other is relative to the

axis of compression a. In both cases, the flow is decomposed

into “parallel” flow, towards p or towards p along a, as in

V‖a = V ·F‖a, V‖p = V ·F‖p, (5)

and “perpendicular” flow circulating around p or moving

perpendicular to a, as in

V⊥a = V ·F⊥a, V⊥p = V ·F⊥p, (6)

where F are the parallel and perpendicular flow fields

depicted in Fig. 4. Note that the decomposed flows are scalar

fields, while the optical flow is a vector field.

(a) (b)

Fig. 4. Flow is decomposed relative to the point at the center of
compression p, and the axis of compression a. (a) F‖p: flow towards the
point p (red) and F‖a: along a (yellow); (b) F⊥p: flow around the point
p (red) and F⊥a: perpendicular to a (yellow). The gripper is visible at the
top and bottom of each frame, highlighted in green.

The decomposed flow components contain information

about the dynamics of the scene, in both temporal and spatial

dimensions. As a first pass we discard spatial information by

taking the mean flow over each frame. We then compute

running temporal means based on both the signed and

absolute values of the per-frame sums. Examples of these

statistics are included in Fig. 8.

Inspecting Fig. 8 we note that while the means of the

signed values all converge to zero, as expected for a station-

ary cyclic signal, the means of the absolute values converge

to values that depend on the material properties of the

object being inspected. The absolute flow, shown in Fig. 8(i),

reveals the extent to which the object is deformed for a

given stimulus, a measure of softness. Distinct from this are

the ratios of parallel to perpendicular components, which

reveal how compressible or, conversely, fluid-like the object

is. We expect highly compressible objects to exhibit small

perpendicular flow, and more fluid-like objects to exhibit

larger perpendicular flow, approaching the magnitude of the

parallel flow.

B. Normalized Statistics

Following the arguments above, we propose a statistic

inspired by Poisson’s ratio, based on the proportion of flow

parallel to the axis a,

ν =
∑

|V‖a|/
∑

|V | (7)

which we call the visual compressibility ratio. This is an at-

tractive feature because it is not tied directly to the magnitude

of deflection, but rather to the shape of the flow.

Similarly, we propose the normalization of all four flow

components by dividing by the total flow magnitude, as

in (7). This makes these quantities at least partially immune

to variations in magnitude due to changes in stimulus or

positioning of the camera or object under investigation.

VI. EXPERIMENTS

A Rethink Robotics Baxter robot was used to squeeze a

series of deformable objects: foam blocks of varied stiffness

and textural detail, paper and plastic cups with differing

textures and filled to different levels, rubber ducks, squishy

toys, plastic bottles and other beverage containers. Baxter is

shown in Fig. 1 along with some of the objects we tested.



(a) (b)

(c) (d)

Fig. 5. Estimated optical flow for (a) a relatively soft foam F1 shown at
the moment of compression and (b) release; and (c) a relatively stiff foam
F2 showing little deflection or texture. Unfiltered video of this foam yields
a poor, inconsistent flow estimate – note how all flow is down and to the
left – while (d) filtered and motion-amplified video shows a consistent flow
field similar to that of the softer foam. The gripper is visible at the top and
bottom of each frame, highlighted in green.

For the foam block experiments a GoPro camera was

used at 1280×720×50fps, while the remainder of the ex-

periments used a monochrome Point Grey Firefly MV at

640×480×60fps. Frames were manually cropped to include

only the object under investigation, and the center and axis of

compression p,a were manually specified. We expect these

manual steps to be automated in future.

A. Foam Blocks

Estimated flow fields for two foam blocks, a softer block

F1 and a stiffer block F2, are shown in Fig. 5. For these

experiments Baxter was set to repeatedly squeeze the blocks

through a deflection of a few mm at a rate of about 4 Hz.

The soft foam responded as expected and yielded consistent,

coherent flow estimates, shown in Figs. 5(a) and (b) at the

points of maximum compression and release, respectively.

The stiff foam only deflected by a fraction of a mm

and yielded poor, inconsistent flow estimates. Low SNR

due to lack of textural detail, together with the very small

deflections, prevented accurate estimation of optical flow.

The filtering process, shown in more detail below, yielded

motion-amplified video which allowed for a much clearer

motion estimate, shown in Fig. 5(d) for a constant motion

gain of 10. A rotational component has been removed from

the flow estimates for block F2 to facilitate visualisation only,

this is not used in any computations.

The filtering process for the stiff foam F2 is visualized in

Fig. 6. A single frame of the input is shown in Fig. 6(a), and

a spatio-temporal slice of the video is shown in Fig. 6(c). The

later was produced by selecting a vertical slice near the center

of u, shown in red in (a), and plotting this slice as a function

of n. Fig. 6(d) shows how histogram equalization brings out

TABLE I

FILTER SETTINGS FOR CUPS EXPERIMENT

Duration 243 frames
Period 16 / 243 cycles/frame
Max Velocity none
Min Velocity 1/30 pix/frame
Hn BW 0.25 / 243
Hlow , Hhigh BW 2 / 243
Motion Gain 1

the texture of the foam, but also amplifies noise. Filtering

alone reduces much of this noise, as seen in Fig. 6(e), and

motion amplification reveals substantial motion throughout

the foam, as seen in Fig. 6(f) for G = 4.

Decomposition of the flow field for foam F1, as described

in Sect. V-A, is shown in Fig. 7, while Fig. 8 depicts per-

frame running mean values for each of the decomposed fields

and their absolute values. The sum of the absolute flow

magnitude is also shown. Values are depicted over about

five cycles of stimulus, 60 frames of video, during which all

statistics have converged to stable values.

The compressibility ratio for both F1 and F2 are depicted

in Fig. 9. While these two foams are very easy to distinguish

on the basis of the magnitude of deflection alone, distin-

guishing them using the compressibility ratio indicates the

power of this statistic to distinguish objects without exact

knowledge of the magnitude of the flow. This is important

where different manipulators are in use, or where positioning

of the object under investigation can vary.

B. Cups, Bottles and Squishy Toys

In a larger experiment we investigated the behaviour of

seven deformable objects over 59 videos, including variations

in pose and illumination. The dataset included four beverage

containers C1–C4, a water bottle B1 and plastic milk bottle

B2, and a stress toy T1.

C1–C3 are depicted in Fig. 1: C1 and C2 are paper coffee

cups, C3 is a soda can in a foam insulating sleeve, and C4

(not shown) is a rigid plastic cup. We tested each container

and bottle at multiple fill levels by adding water in 94 mL

increments, yielding 7 fill levels for B1, B2 and C3, 5 for

C1 and C2, and 4 for C4. Baxter was set to squeeze each

object through a deflection of a few mm, at a rate of about

4 Hz, which at 60 fps resulted in about 15 frames per cycle.

For C1–C3, the experiment was repeated over two trials.

Because some objects showed little texture, e.g. C1, and

others offered little deflection, e.g. C3, the filter described

in Sect. IV was necessary to obtain usable optical flow

estimates. The filter settings were selected manually, and

are shown in Table I. The video duration was selected to

contain an approximately integer number of cycles. Note

that no motion gain was necessary for this experiment, as

even small deflections were sufficient for detection by dense

optical flow, once the noise-reducing filter was applied.

To establish our ability to distinguish object types, we

applied PCA to the flow field statistics for all 59 videos. We

employed the normalized statistics described in Sect. V-B,

for their immunity to variations in absolute flow magnitude



(a) Original, in u, v (b) Filtered & Amplified

(c) Original, in v, n (d) Equalized

(e) Filtered (f) Filtered & Amplified

Fig. 6. The stiff foam F2 (a) shown as a single frame in u, v, and (c) as a vertical slice near the center of u, as it varies with frame index n. Note
the lack of motion and textural detail. (d) Adaptive equalization emphasizes both texture and noise, while (e) filtering reduces much of the noise, and
(f),(b) filtering and motion amplification reveal texture and motion.

(a) (b)

(c) (d)

Fig. 7. Decomposing the flow field; (a) V‖p: magnitude of flow toward
the center of compression p and (b) V⊥p: around p; (c) V‖a: flow inward
along the axis of compression a, and (d) V⊥a: perpendicular to a. Green
represents positive flow and cyan negative. Different materials show different
characteristic flow field decompositions.

and object position. Figs. 10(a) and (b) show the dataset as

seen through the first two principal components. Note that a

single PCA was performed, but the results are divided into

two figures for visualization purposes. From the figures it is

clear that the objects show different behaviours, and their

statistics cluster such that many object types are linearly

distinguishable from the others. The bottles and toy, for

example, are mutually separable, as are the four cup types.

Observe from Fig. 10(b) that the statistics for C2 appear

more spread out than for the other cup types. We hypothesize

this is due to C2 responding more strongly to its fluid level

than the other objects. To test this hypothesis, we plotted

the visual compressibility ratio of C2 as a function of fluid

level, as shown in Fig. 11. Although only repeated over

two trials, it’s clear from the resulting plot that there is a

strong potential to estimate fill level based solely on the

compressibility ratio for this cup type, with higher fill levels

yielding more repeatable results. Why the other container

types show less variation, and how their fluid levels might

be estimated, are left as future work.

C. Limitations

The proposed method and experiments have a few im-

portant limitations. The apparent brightness of a deforming

object will change as surfaces face towards and away from

illumination sources. Though our statistics focus on normal-

ized ratios of textural flow, which should be invariant to

such factors, further experimentation is called for to confirm

invariance to illumination conditions.

In analyzing an object’s behaviour we assume elastic

deformation. Plastic deformation or rigid materials with

zero deformation will not yield the cyclic motion required

by the filtering and analysis stages. This calls for higher-
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Fig. 8. Features based on decomposed flow fields, taken as (left) signed and
(right) absolute values: (a),(b) flow into p and (c),(d) around p; (e),(f) com-
pression along a and (g),(h) perpendicular to a; and (i) absolute flow.
Signed values converge to zero as expected, while absolute values converge
differently, revealing the characteristics of the object under inspection.

level reasoning, in which the robot begins with a gentle

stimulus and increases this as needed, detecting the failure

modes of inelastic or zero deformation. Note that there is no

requirement for the material to be linear, in that it follows

Hooke’s law, provided deformation is elastic.

Decomposition of the flow field requires knowledge of the

center and axis of compression. For the present work we have

manually specified these values, and automating this task is

left as future work, as is analysis of sensitivity to errors in

these values.

Fig. 9. Estimating a quantity similar to Poisson’s ratio, the proportion of
flow parallel to the axis of compression, for the soft and stiff foams F1 and
F2, respectively. Note that this is not the same as softness, and in this case
the softer foam has a lower compressibility ratio.

(a)

(b)

Fig. 10. The first two components of PCA conducted on normalized flow
statistics for 59 videos of 7 object types: clearly clustered are (a) two bottle
types and a squishy toy, and (b) four cup types.

Fig. 11. Plotting the visual compressibility ratio for cup type C2 over five
fill levels, over two trials, reveals a strong potential to estimate fill level
from flow statistics alone.



We manually identified the spatial and temporal extents of

the object under analysis. Given that we have control over

the stimulus, automatically choosing an appropriate temporal

extent is trivial. Segmenting out the appropriate spatial extent

can be automated based on the magnitude of the observed

flow field |V |, which is near zero for background elements.

Throughout the experiments Baxter’s gripper introduced

small undesired motions to the object under analysis. Though

the filtering stage is designed to ignore such small, non-

periodic motions, a detailed analysis of its effectiveness at

doing so would be appropriate.

VII. CONCLUSIONS AND FUTURE WORK

We presented a method for visually analyzing objects

through modulated manipulation and matched filtering and

motion amplification. The algorithmic components are linear

and easily parallelized, making them appropriate for real-

time embedded deployment. No specialized hardware is

required, only a camera and any means of applying periodic

stimulus to the scene.

The proposed approach can be seen as an extension of

computational imaging to exploit the ability of robots to

interact with their environments. Thinking of robotic manip-

ulation in this way, we anticipate generalizing beyond simple

periodic stimuli into more complex schemes. Periodic motion

in dynamic scenes may interfere with periodic stimulus,

motivating extension to coded stimulus, in which extended

patterns (“codes”) drive the manipulator, and are chosen so

as to occur rarely in natural scenes.

This result intuits from a mechanical perspective. For this

may be thought of as an online approach that carefully tracks

displacements and leverages the mapping between them and

(unspecified) driving forces applied, to help identify object

properties (such as stiffness), in essence giving a spring law

(e.g. Hooke’s Law, F = kx). In this way, this approach may

be extended to identifying changing mechanical properties

more quickly than traditional system identification.

Other extensions include dynamic gain and code selection

and their incorporation into the resulting feature values, and

an exploration of features based on spatial flow distributions

and dynamics. We anticipate automating the collection of

large datasets allowing the application of modern, high-

performance learning algorithms and, ultimately, using these

to drive manipulation decisions. Finally, we anticipate in-

stalling a force sensor to allow a robot to learn the visual

estimation of physically grounded quantities.
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