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Image-Based Visual Servoing with Light Field

Cameras
Dorian Tsai1, Donald G. Dansereau2, Thierry Peynot1 and Peter Corke1

Abstract—This paper proposes the first derivation, implemen-
tation, and experimental validation of light field image-based
visual servoing. Light field image Jacobians are derived based
on a compact light field feature representation that is close to the
form measured directly by light field cameras. We also enhance
feature detection and correspondence by enforcing light field
geometry constraints, and directly estimate the image Jacobian
without knowledge of point depth. The proposed approach is
implemented over a standard visual servoing control loop, and
applied to a custom mirror-based light field camera mounted on
a robotic arm. Light field image-based visual servoing is then
validated in both simulation and experiment. We show that the
proposed method outperforms conventional monocular and stereo
image-based visual servoing under field-of-view constraints and
occlusions.

Index Terms—Visual Servoing; Computer Vision for Automa-
tion

I. INTRODUCTION

V ISUAL servoing (VS) is a robot control technique that

makes direct use of visual information by placing the

camera in the control loop. is widely applicable and generally

robust to errors in camera calibration, robot calibration and

image measurement [1]–[3]. Most VS techniques fall into one

of two categories. Position-based visual servoing (PBVS) uses

observed features and a geometric object model to estimate the

camera-object relative pose and adjust the camera pose accord-

ingly. Image-based visual servoing (IBVS) uses the observed

features directly to estimate the required rate of change of

camera pose. However, most IBVS algorithms are focused on

conventional monocular cameras that inherently suffer from

lack of depth information, narrow field of view constraints,

and struggle with occlusions and specular highlights. Light

field (LF) cameras, also known as plenoptic cameras, offer a

potential solution to these problems. As a first step in exploring

LF for IBVS, this paper considers the multiple views and depth

information implicit in the LF structure. To the best of our
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Fig. 1. (a) MirrorCam mounted on the Kinova MICO robot manipulator. Nine
mirrors of different shape and orientation reflect the scene into the upwards-
facing camera to create 9 virtual cameras, which provides video frame-rate
light fields. (b) A whole image captured by the MirrorCam and (c) the same
decoded into a light field parameterization of 9 sub-images, visualized as a 2D
tiling of 2D images. The non-rectangular sub-images allow for greater FOV
overlap.

knowledge, light field image-based visual servoing (LF-IBVS)

has not yet been proposed.

The main contribution of this paper is the derivation, im-

plementation and experimental validation of LF-IBVS. We

derive image Jacobians for the LF. We define an appropriate

compact representation for LF features that is close to the form

measured directly by LF cameras. In addition, we take a step

towards truly 4D plenoptic feature extraction by enforcing LF

geometry in feature detection and correspondence. We validate

our proposed method for LF-IBVS using both a simulated

camera array and our custom LF camera adapter, shown in

Fig. 1a, which we refer to as MirrorCam, mounted on a robot

manipulator. Finally, we show that LF-IBVS outperforms con-

ventional monocular and stereo IBVS, which can be considered

a degenerate form of LF-IBVS, for objects occupying the same

field-of-view and in the presence of occlusions.

The remainder of this paper is organized as follows. Sec-

tion II provides some background, formulates the VS problem

and explains the LF parameterization. Section III explains the

derivations for LF image Jacobians, features, correspondence

and the control system. Section IV describes our experimental

setup with the MirrorCam. Section V shows our results, and
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provides a comparison to conventional monocular and stereo

IBVS. Lastly, in Section VI, we conclude the paper and explore

future work.

II. BACKGROUND

LF cameras measure the amount of light travelling along

each ray that intersects the sensor by capturing multiple views

of a single scene [4]. In doing so, these cameras implicitly

encode both geometry and texture, which allows for depth

extraction. Conventional 2D images are thus replaced with 4D

representations of rich visual information. There are several

different LF camera architectures, with the most prevalent be-

ing the camera array [5], and the micro-lens array (MLA) [4].

Although LF cameras typically involve more complex calibra-

tion procedures than their conventional counterparts, LF cam-

eras also offer extra capabilities. Table I compares conventional

and LF camera systems for different capabilities and tolerances

related to VS, given similar configurations, such as sensor size

and number of pixels. Notably, stereo provides depth for a

single baseline along a single direction (typically horizontally),

but multi-camera and LF systems provide more detailed depth

information. They can have both small and long baselines, and

have baselines in multiple directions (typically vertically and

horizontally). LF cameras have an advantage over conventional

multi-camera systems for tolerating occlusions and specular

reflections (or more generally non-Lambertian surfaces). This

is largely due to the regular sampling, and because only

LF cameras capture the refraction, transparency and specular

reflections natively. As such, LF cameras can benefit from

methods that exploit these capabilities [6].

Johannsen et al. recently applied light fields in structure from

motion [7]. They derived a linear relationship using the LF to

solve the correspondence problem and compute a 3D point

cloud. They achieved an increase in accuracy and robustness,

although their 3D-3D approach did not take full advantage of

the 4D LF. Dong et al. focused on Simultaneous Localization

and Mapping (SLAM), and demonstrated that an optimally-

designed low-resolution LF camera allowed them to develop a

SLAM implementation that is more computationally efficient,

and more accurate than SLAM for a single high-resolution

camera [8]. Dansereau et al. derived “plenoptic flow” for

closed-form, computationally efficient visual odometry with

a fixed operation time regardless of scene complexity [9].

Recently, Walter et al. used LF cameras to analyze specular

reflection and detect features specific to specular reflections,

which enabled robots to interact with glossy objects, and

outperform their stereo counterparts [10]. These motivate the

application of LF for robotics and LF-IBVS.

A. Image-Based Visual Servoing

IBVS uses the observed features directly to estimate the

required change in camera pose rate (spatial velocity). IBVS

makes use of an interaction matrix – more commonly, an image

Jacobian, J – to map camera spatial velocity to the optical flow

of points in the scene

ṗ = J(p, cP ;K)ν, (1)

where cP ∈ R
3 is the coordinate of a world point in the camera

reference frame, p ∈ R
2 is its image plane projection, K ∈

R
3×3 is the camera intrinsic matrix, ν = [v; ω] ∈ R

6 is the

camera’s spatial velocity in the camera reference frame, which

is the concatenation of the camera’s translational velocity v =
[vx, vy, vz]

T and rotational velocity ω = [ωx, ωy, ωz]
T in the

camera reference frame.

The control problem is defined by the initial (observed) and

desired image coordinates, p# and p∗ respectively, from which

the required optical flow

ṗ∗ = λ(p∗ − p#)

can be determined, where λ > 0 is a constant. Combining both

equations we can write

J(p, cP ;K)ν = λ(p∗ − p#), (2)

which relates camera velocity to observed and desired image

plane coordinates. However, it is not possible to uniquely

determine the elements of ν for a single observation p.

Typically we stack (2) for each of N image features,

[

J(p1,
cP1;K)

...
J(pN ,cPN ;K)

]

ν = λ





p∗

1−p
#

1

...
p∗

N−p
#

N



 (3)

and if N ≥ 3 we can solve uniquely for ν

ν = −λ

[

J1

...
JN

]+ [

p1−p∗

1

...
pN−p∗

N

]

, (4)

where J+ represents the pseudo-inverse of J . Equation (4)

is similar to the classical proportional control law for VS [1],

except that we use the pseudo-inverse because we may have

noisy observations forming a non-square matrix; the pseudo-

inverse finds a solution that minimizes the norm of the camera

velocity. It is important to note that VS is a local method based

on a linearization of the perspective projection equation, but

in practice it is found to have a wide basin of attraction. In

later sections, we will generalize this approach for LF cameras

by examining one possible representation of a LF feature and

deriving a light field image Jacobian matrix for LF-IBVS.

B. Light Field Parameterization

We employ the relative two-plane parameterization in which

a ray in homogeneous coordinates φ = [s, t, u, v, 1]T is de-

scribed by its points of intersection with two parallel reference

planes; an s, t plane conventionally closest to the camera,

and a u, v plane conventionally closer to the scene, with

separation D [6], which is shown in Fig. 2. In this relative

parameterization, u and v are expressed relative to s and t,
respectively.

The rays emanating from a point in space,
cP = [Px, Py, Pz]

T follow a pair of linear relationships [11],

[12], as shown in Fig. 3
[

u
v

]

=
(

D
Pz

)

[

Px − s
Py − t

]

, (5)

where each equation describes a hyperplane in 4D,

F(s, t, u, v) ∈ R
3, and their intersection describes a plane

L(s, t, u, v) ∈ R
2.
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TABLE I
COMPARISON OF CAMERA SYSTEMS’ CAPABILITIES AND TOLERANCES FOR VISUAL SERVOING

Systems Perspectives Field Baseline Baseline Aperture Occlusion Specular

of View Direction Problem Tolerance Tolerance

Conventional Cameras

Mono 1 wide zero none significant no no

Stereo 2 wide wide single moderate weak no

Trinocular 3 wide wide three moderate moderate no

Multiple cameras n wide wide multiple minor moderate no

Light Field Cameras

Array n2 wide wide multiple minor strong yes

MLA a n2 wide narrow multiple minor strong yes

MirrorCam b n2 narrow wide multiple minor strong yes
a Based on n2 pixels per lenslet
b Based on n2 mirrors

Fig. 2. The two-plane parameterization of light rays. Point P forms a ray
Φ that intersects the two parallel planes. The intersecting points completely
describe position and direction of the ray. By convention, the (s, t) plane is
closer to the camera, and the (u, v) plane is closer to the scene, and taken
relative to the (s, t) coordinates [6].

We define our LF feature with respect to the central view

of the LF as W = [u0, v0, w]
T, where u, v is the direction of

the ray entering the central view of the LF, i.e.

[

u0

v0

]

=

[

u
v

]

s,t=0

=
(

D
Pz

)

[

Px

Py

]

. (6)

The slope w relates the image plane coordinates for all rays

emanating from a point in the scene. Fig. 3a shows the

geometry of the LF for a single view of cP . As the viewpoint

changes, that is, s and t change, the image plane coordinates

vary linearly according to (5). In Fig. 3b, we show how u varies

as a function of s, noting that v varies as a similar function

of t. The slope of this line w, comes directly from (5), and is

given by

w = −D/Pz, (7)

noting that this slope is identical in the s, u and t, v planes.

In the literature, this is refered to as the point-plane cor-

respondence [6]. We exploit this aspect of the LF in the

feature matching and correspondence process, described in

Section IV-A. This representation is similar to the Augmented

(a) (b)

Fig. 3. (a) Light field geometry for a point in space for a single view (black),
and other views (grey), whereby u varies linearly with s for all rays originating
from cP . (b) The corresponding line in the s, u plane, having the slope w [6].

Image Space of [13] for perspective images where the image-

plane coordinates are augmented with Cartesian depth. By

working with slope, akin to disparity from stereo algorithms,

we deal more closely with the structure of the light field.

III. LIGHT FIELD IMAGE-BASED VISUAL SERVOING

In this section, we derive the Jacobians, and describe how

we exploit the LF for IBVS.

A. Continuous-domain Image Jacobian

Following the derivation for conventional IBVS, we wish

to relate the camera’s velocity to the resulting change in

an observed feature W through a continuous-domain image

Jacobian

Ẇ = JCν. (8)

Differentiation of (6) and (7) yields

u̇0 = D(ṖxPz − PxṖz)/P
2
z , (9)

v̇0 = D(ṖyPz − PyṖz)/P
2
z , (10)

ẇ = DṖz/P
2
z , (11)
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where u0, v0 and w are the feature positions and velocities

with respect to the central camera frame.

We can write the apparent motion of a 3D point as

cṖ = −(ω × cP )− v, (12)

yielding three components cṖ expressed in terms of cP and ν.

Substituting these expressions into (9)–(11) allows us to factor

out the continuous-domain Jacobian

JC =





w 0
−wu0

D

u0v0
D

−D−
u2
0

D
v0

0 w
−wv0

D
D+

v2
0

D

−u0v0
D

−u0

0 0 −w2

D

wv0
D

−wu0
D

0



 . (13)

While conventional image Jacobians require an estimate of

depth, we note that JC instead has slope w – an inverse

measure of depth, which we can observe directly in the LF.

The slope w is explicit in all columns of (13) except the last

one, because the LF camera array spans both the x− and

y− axes, and can therefore observe motion parallax about

those axes. The optical flow for the final column is due to

rotation about the optical axis, and is therefore invariant to

depth. In contrast, depth is not explicit in the monocular image

Jacobian for rotations about the x- and y-axes. Trinocular

and multi-camera system image Jacobians would have similar

depth dependencies to JC . Multiple views make parallax, and

thus depth, observable in rotations about the x- and y-axes for

the LF camera array. Additionally, JC has a rank of 3, which

implies that the stacked image Jacobian will be full rank with

a minimum of 2 points for LF-IBVS, in contrast to a minimum

of 3 image points for monocular image-based visual servoing

(M-IBVS).

B. Discrete-domain Image Jacobian

In the discrete domain, we refer to i, j and k, l as the discrete

versions of s, t and u, v, respectively. We observe our discrete-

domain feature M as the discrete position and slope M =
[k0, l0,mx,my]

T, where [k0, l0] are observations taken from

the central view in i, j, and separate slopes mx in the i, k
dimensions and my in j, l. The general plenoptic camera is

described by an intrinsic matrix H relating a ray φ to the

corresponding sample in the LF n = [i, j, k, l, 1]T as in

φ = Hn, (14)

where in general H is of the form

H =





h11 0 h13 0 h15

0 h22 0 h24 h25

h31 0 h33 0 h35

0 h42 0 h44 h45

0 0 0 0 1



 , (15)

and the matrix H is found through plenoptic camera calibra-

tion [14]. However, we limit our development to the case of a

rectified camera array, for which only diagonal entries and the

final column are nonzero [6]. In this case h11 and h22 are the

horizontal and vertical camera array spacing, in meters, and h33

and h44 are given by D/fx and D/fy , i.e. the inverse of the

horizontal and vertical focal lengths of the cameras, expressed

in pixels, scaled by the reference plane separation. The final

column encodes the centre of the LF, e.g. for Nk samples in

k, h15 = -h11(Nk/2+1/2) and k = Nk/2+1/2 is the centre

sample in k. We also note that mx and my encode the same

information following the relationship

mx =
h11h44

h22h33
my. (16)

We wish to express the image Jacobian of (8) in the discrete

domain,

Ṁ = [ ˙̄k0,
˙̄l0, ṁx]

T = JDν, (17)

where the observation is expressed relative to the LF centre,

k̄0 = k0 + h35/h33, l̄0 = l0 + h45/h44.

From (14), we can relate the discrete and continuous-domain

observations as

u0 = h33k̄0, v0 = h44 l̄0, w =
h33

h11
mx =

h44

h22
my, (18)

from which it is trivial to express the derivatives of the discrete

observation in terms of the continuous variables:

˙̄k0 = h-1
33u̇0,

˙̄l0 = h-1
44v̇0, ṁx =

h11

h33
ẇ, ṁy =

h22

h44
ẇ. (19)

Substituting the continuous-domain derivatives in (8),

and (13) and discrete/continuous relationships in (18) into (19)

allows us to factor out the discrete-domain Jacobian

JD =






mx
h11

0 -
h33
h11

k̄0mx
D

h44
k̄0 l̄0
D

-h33
k̄2
0

D
−

D
h33

h44
h33

l̄0

0
my

h22
-
h44
h22

l̄0my

D
h44

l̄20
D

+ D
h44

-h33
k̄0 l̄0
D

-
h33
h44

k̄0

0 0 -
h33
h11

m2
x

D
h44

l̄0mx
D

-h33
k̄0mx

D
0






. (20)

IV. IMPLEMENTATION & EXPERIMENTAL SETUP

In this section, we discuss the implementation details of our

LF-IBVS approach, including how we exploit the LF structure

for feature matching and correspondence. We then validate our

proposed derivation of LF-IBVS using a closed loop control

and the experimental setup described below.

A. Light Field Features

To our knowledge all prior work on LF features operates by

applying 2D feature detectors to 2D slices in the u, v dimen-

sions [7]. In this paper, we do the same. Our implementation

employs Speeded-Up Robust Features (SURF) [15], though the

proposed method is agnostic to feature type. However, as a first

step towards truly 4D features, we augment the 2D feature

location with the local light field slope, implicitly encoding

depth.

Operating on 2D slices of the LF, feature matches are found

between the central view and all other sub-images. Each pair

of matched 2D features is treated as a potential 4D feature.

A single feature pair yields a slope estimate, which defines an

expected feature location in all other sub-images. We introduce

a tuneable constant that determines the maximum distance

between observed and expected feature locations, in pixels,

and reject all matches exceeding this limit. We also reject

features that break the point-plane correspondence discussed

in Section II-B. By selecting only features that adhere to the

planar relationship (5), we can remove spurious and inconsis-

tent detections.
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A second constant NMIN imposes the minimum number of

sub-images in which feature matches must be found. In the

absence of occlusions, this can be set to require feature matches

in all sub-images. Any feature passing the maximum distance

criterion in at least NMIN images is accepted as a 4D feature,

and a mean slope estimate is formed based on all passing sub-

images. NMIN was set to 4 out of 8 sub-image matches for our

experiments.

Feature matching between two light fields again starts with

conventional 2D methods. A conventional 2D feature match

finds putative correspondences between the central sub-images

of the two light fields. Outlier rejection is performed using the

M-estimator SAmple Consensus algorithm [16].

B. Mirror-Based Light Field Camera Adapter

There is a scarcity of commercially available LF cameras

appropriate for robotics applications. Notably, no commercial

camera delivers 4D light fields at video frame rates1. Therefore,

we constructed our own LF video camera by employing a

mirror-based adapter, based on previous work [17], [18]. We

refer to this LF camera as the MirrorCam, which is depicted in

Fig. 1a. The MirrorCam design, optimisation, construction, cal-

ibration, and image decoding processes are described in [19].

This approach splits the camera’s field of view into sub-images

using an array of planar mirrors, as shown in Fig. 1c. By

appropriately positioning the mirrors, a grid of virtual views

with overlapping fields of view can be constructed, effectively

capturing a light field. We 3D-printed the mount based on our

optimization, and populated it with laser-cut acrylic mirrors.

Note that the LF-IBVS method described in this paper does

not rely on this particular LF camera design, and applies to

4D light fields in general.

C. Control Loop

The proposed LF-IBVS control loop is depicted in Fig. 4.

Notably, this control loop is similar to that of standard VS.

Goal image features f∗ ∈ R
3 are compared to observed

image features f ∈ R
3. The pseudo-inverse of the Jacobian

is computed, resulting in a camera spatial velocity ν, which is

subsequently multiplied by a gain λ, as in (4).

Although velocity control is formulated in (4), the un-

optimized algorithms to process the light fields from the

MirrorCam currently operate at less than 0.1 Hz, which is

impractical for velocity control. We therefore take a step-by-

step approach and assume infinitesimal motion to convert ν

into a homogeneous transform cT that we use to update the

camera’s pose. A motion controller moves the robot arm. After

finishing the motion, a new image is taken and the feedback

loop repeats until the image feature error converges to zero.

An important consideration in LF-IBVS is the feature rep-

resentation, because the choice of feature representation in

IBVS influences the Cartesian motion of the camera [20]. We

have the option of computing the 3D positions of the points

obtained from the LF; however, this would be no different from

1Though one manufacturer provides video, it does not provide a 4D LF,
only 2D, RGBD or raw lenslet images with no method for decoding to 4D.

Inverse
Jacobian

Grab 
Image

Decode
Extract

λ
Motion

controller

f*

f

+

-

ν CT

I

Fig. 4. The control loop for the VS system. Goal features f∗ are given.
Then f∗ and f are compared, the J+ is computed, and camera velocity ν is
determined with gain λ and converted into a motion cT . A motion controller
moves the robot arm. After finishing the motion, a new image is taken and
the feedback loop repeats until image features match.

PBVS. Instead, we chose to work more closely to the native LF

representation, working with projected feature position, aug-

mented by slope. Doing so avoids unnecessary computation,

and is more numerically stable as depth computation involves

inverting slope.

We define the terminal condition for LF-IBVS as a threshold

on the root mean square (RMS) error between all of the

observed LF features and the goal LF features. We combine all

of M , and note that (u0, v0) are in meters, and (k̄0, l̄0) are in

pixels, but the slope w is unit-less. This issue can be addressed

by weighting the components; however, for the discrete case,

in practice we found that mx and my had similar relative

magnitudes. Additionally, we typically use a small λ of 0.1
in order to generate a smooth trajectory towards the goal view.

We found that the manufacturer’s built-in inverse kinematics

software became unresponsive for small pose adjustments2;

therefore, we implemented a resolved-rate motion control

method using a manipulator Jacobian to command camera spa-

tial velocities to desired joint velocities [21]. We also changed

the proportional, integral and derivative controller gains for all

joints to KP = 2.0,KI = 4.8, and KD = 0.0, respectively.

With these implementations, we achieved sufficient positional

accuracy and resolution to demonstrate LF-IBVS.

V. RESULTS

A. Camera Array Simulation

In order to verify our LF-IBVS algorithm, we first simulated

a 3×3 array of cameras. Four planar world points in 3D were

projected into the image planes of the 9 cameras. A typical

example of LF-IBVS is shown in Fig. 5. For this example,

a small gain λ = 0.1 was used to enforce small steps and

produce smooth plots as shown in Fig. 5a. The Cartesian

positions and orientations relative to the goal pose converge

smoothly to zero, as shown in Fig. 5b. Similarly, the camera

velocity profiles in Fig. 5c converge to zero. Fig. 5d shows

the image Jacobian condition number first increases, and then

decreases to a constant lower value, indicating that the Jacobian

becomes worse and then better conditioned, as the features

move closer and then further apart, respectively. Together, these

figures show the system converges, indicating that LF-IBVS

was successful in simulation. Similar to conventional IBVS,

a large λ results in a faster convergence, but a less smooth

trajectory.

2Limits were determined experimentally and confirmed by the manufacturer.
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Fig. 5. Simulation of LF-IBVS, with (a) error (RMS of f − f∗) decreasing
over time, (b) camera motion profiles relative to the goal pose, (c) Cartesian
velocities, and (d) image Jacobian number for λ = 0.1. Error, relative pose
and velocities all converge to zero.
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Fig. 6. Simluation of view (a) of the initial target points (blue), servoing
along the image plane feature paths (green) to the target goal (red), and (b)
the feature trajectory profile of M−M∗, corresponding to the top left corner
of the target, which converges to zero.

Fig. 6a shows the view of the central camera, and the image

feature paths as the camera array servos to the goal view. We

see that the image feature paths are almost straight due to the

linearization of the Jacobian. Fig. 6b shows the trajectories of

the top-left corner of the target relative to the goal features,

which also converge to zero. We note the slope profile matches

the inverse of the z-position profile in the top red line of

Fig. 5b, as it encodes depth.

For large initial angular displacements, we note that like

regular IBVS, this formulation of LF-IBVS exhibited camera

retreat issues. Instead of taking the straight-forward screw

motion towards the goal, the camera retreats backwards, before

moving forwards to reach the goal view.

B. Arm-Mounted MirrorCam Experiments

We also validated LF-IBVS using the MirrorCam mounted

to the end of a Kinova MICO arm robot, shown in Fig. 1a. The

robot arm and camera were controlled using the architecture

outlined in Fig. 4. For the experiments, we first moved the
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Fig. 7. Experimental results of LF-IBVS with MirrorCam on the robot arm,
illustrating (a) the error (RMS of M − M∗) that converges after 20 time
steps, (b) the camera motion profiles relative to the goal, which converge
to zero, (c) the camera velocity profiles, which converge to zero, and (d) the
image Jacobian condition number. Note the LF-IBVS outpeforms S-IBVS; the
motion profiles are much smoother, and the velocities and condition numbers
are an order of magnitude smaller than those from S-IBVS in Fig 8.

MirrorCam to the goal pose and recorded the goal view and

its corresponding features. Then the camera was moved to an

initial pose and made to servo back to the goal view using

LF-IBVS. We tested the MirrorCam on a scene similar to

Fig. 1b, with complex motion involving all 6 DOF from the

initial pose.

Fig. 7 shows the performance of our LF-IBVS algorithm for

the scene with λ = 0.15. Fig. 7a shows the error decreasing

over time as the camera approaches the goal view, and con-

verges after 20 time steps. We attribute the non-zero error to

the arm’s limited performance, which we address at the end of

this section. Fig. 7b shows the relative pose of the camera to

the goal in the camera frame converging smoothly to zero. Note

that the goal pose is never the objective of LF-IBVS; rather,

the image features captured at the goal pose drive LF-IBVS.

Fig. 7c shows the commanded camera velocities also converge

to zero. Fig. 7d shows the condition number for the image

Jacobian, which decreases slightly as the system converges.

We also note that despite only an approximate camera-to-end-

effector calibration, the system converged, which suggests the

robustness of the system against modelling errors.

LF-IBVS was compared against conventional M-IBVS

and stereo image-based visual servoing (S-IBVS). Using the

sub-images from the MirrorCam in Fig. 1c, we used the

view through the central mirror for M-IBVS, and the two

horizontally-adjacent views to the centre from the MirrorCam

for S-IBVS. This was done to maintain the same FOV and pixel

resolution. Implementations were based on [21], [22]. The

average scene depth was provided for M-IBVS and S-IBVS

to compute the Jacobian, although we note depth, or disparity
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Fig. 8. Experimental results of S-IBVS with narrow FOV sub-images from
the MirrorCam, on the robot arm, illustrating the performance in (a) the error
(RMS of p−p∗) that eventually converges after 25 time steps, (b) the camera
motion profiles relative to the goal that show an erratic trajectory at the start,
(c) the camera velocity profiles that also vary greatly, and (d) the extremely
large image Jacobian condition number.

can be measured directly from stereo. All three IBVS methods

were tested 10 times on the same goal scene and initial pose.

A typical case for S-IBVS is shown in Fig. 8. The image

feature error is not uniformly decreasing at the start, but

eventually converges after 25 time steps. The camera moves

in an erratic motion at the start in the x- and y-axes, but still

manages to converge to the goal pose, as seen in the relative

pose trajectories and camera velocities in Fig. 8b and 8c.

M-IBVS exhibited worse performance than stereo, to the extent

that such erratic motion caused the robot to completely lose

view of the goal scene. This is probably not because λ was

too high for S-IBVS; smaller gains were tested for S-IBVS,

but yielded the same poor performance.

Instead, we observe that the S-IBVS Jacobian condition

number in Fig. 8d was an order of magnitude higher than

LF-IBVS, producing an almost rank-deficient Jacobian; such a

Jacobian becomes an inaccurate approximation of the spatial

velocities, and yields erratic motion. We attribute this poor

performance to the narrow FOV, and thus the lack of perspec-

tive change, which is required to differentiate rotation from

translation, particularly about the x- and y-axes. In addition,

the projected scale of the object being servoed against affects

the performance of IBVS; smaller or more distant objects

yield poorly-conditioned image Jacobians. These observations

are not new or surprising [8]. However, they do suggest that

LF-IBVS outperformed both of our constrained implementa-

tions of M-IBVS and S-IBVS, as LF-IBVS converged with a

smooth trajectory regardless of the narrow FOV constraints of

the MirrorCam.

Experiments with occlusions were also conducted using a

series of black wires to partially occlude the scene. The setup

is illustrated in Fig. 9 and 10. The goal, or reference image,

occluded goal view

unoccluded initial view

camera trajectory

MirrorCam

partial occlusions

scene features

field of view

Fig. 9. Occlusion experimental setup, showing the initial view of the scene
(red) with no occlusions, the camera trajectory that gradually becomes more
occluded, and converging to the goal view with partial occlusions (green).

(a) (b)

Fig. 10. Occlusion experiments showing (a) the goal view with no occlusions
from the MirrorCam, and (b) the goal view, partially occluded by a box of
black wires. The arm was able to reach the partially-occluded goal view using
LF-IBVS, but not M-IBVS or S-IBVS. Images shown are flipped vertically.

was captured without the occlusions at a specified goal pose.

An example image is shown in Fig. 10a. Next, the robot was

moved to an initial pose, where the occlusions did not obscure

the scene. Then the robot was allowed to servo towards the

goal, along a path where the occlusions gradually obscured

the goal view. The final goal image was partially occluded,

as shown in Fig. 10b. M-IBVS, S-IBVS and LF-IBVS were

run using the same setup. With the partially occluded views,

M-IBVS and S-IBVS failed; whereas the LF-IBVS method

servoed to the original goal pose.

Fig. 11 compares the number of features matched by

LF-IBVS, M-IBVS, and S-IBVS in the occlusion experiment.

Without any occlusions, we note that all three methods have

a similar number of matched features at the goal view, al-

though stereo and mono have slightly more matches than

LF-IBVS throughout the experiment. This is likely because all

3 methods used similar 2D feature detection methods; however,

our LF-IBVS approach also rejected those features that were

inconsistent with LF geometry. With occlusions, M-IBVS fails

at time step 5, when it is unable to match sufficient features.

Similarly, the performance of S-IBVS quickly degrades at time

step 10, as the occlusion covers most of the left view and

significant portions of the right view. On the other hand, in the

presence of occlusions, LF-IBVS has fewer matches than the

unoccluded case, but still matches a consistent and sufficient

number of features throughout its trajectory to converge. It is

therefore apparent that LF-IBVS can utilize the LF camera’s

multiple views and baseline directions to handle partial occlu-

sions. Trinocular and multi-camera systems may also benefit
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Fig. 11. Experimental results for number of features matched over time with
occlusions (dashed), and without (solid), for LF-IBVS (red), S-IBVS (blue),
and M-IBVS (black). Both stereo and monocular methods fail at time step
5 and 10, respectively, but LF-IBVS maintains enough feature matches to
converge to the goal pose, which demonstrates that LF-IBVS is more robust
to occlusions.

from the occlusion tolerance that we demonstrated, but would

lack tolerance to specular highlights and other non-Lambertian

surfaces as discussed in Table I.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed the first derivation, im-

plementation, and validation of light field image-based visual

servoing. We have derived the image Jacobian for LF-IBVS

based on a LF feature representation that is augmented by the

local light field slope. We have exploited the LF in our feature

detection, correspondence, and matching processes. Using a

basic VS control loop, we have shown in simulation and

on a robotic platform that LF-IBVS is viable for controlling

robot motion. Further research into alternative feature types

may address camera retreat and improve the performance of

LF-IBVS.

Our implementation takes 5 seconds per frame to operate

as unoptimized MATLAB code. The decoding and correspon-

dence processes are the current bottlenecks. Through optimiza-

tion, real-time LF-IBVS should be possible.

Our experimental results demonstrate that LF-IBVS is more

tolerant than monocular and stereo methods to narrow FOV

constraints and partially-occluded scenes. Robotic applications

operating in narrow, constrained and occluded environments,

or those aimed at small or distant targets would benefit from

LF-IBVS, such as household grasping, medical robotics, and

in-orbit satellite servicing. In future work, we will investigate

other LF camera systems, how to further exploit the 4D nature

of the light field features, and evaluate the performance of

LF-IBVS in the presence of specular highlights and other non-

Lambertian surfaces, where the method should strongly benefit

from the light field.
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[17] M. Fuchs, M. Kächele, and S. Rusinkiewicz, “Design and fabrication

of faceted mirror arrays for light field capture,” in Computer Graphics

Forum, vol. 32, no. 8. Wiley Online Library, 2013, pp. 246–257.
[18] W. Song, Y. Liu, W. Li, and Y. Wang, “Light field acquisition using a

planar catadioptric system,” Optics Express, vol. 23, no. 24, pp. 31 126–
31 135, 2015.

[19] D. Tsai, D. Dansereau, S. Martin, and P. Corke, “Mirrored Light Field
Video Camera Adapter,” Queensland University of Technology, Tech.
Rep., December 2016.

[20] R. Mahony, P. Corke, and F. Chaumette, “Choice of image features
for depth-axis control in image based visual servo control,” in Intl.

Conference on Intelligent Robots and Systems (IROS). IEEE, 2002,
pp. 390–395.

[21] P. Corke, Robotics, Vision and Control. Springer, 2013.
[22] F. Chaumette and S. Hutchinson, “Visual servo control part 1: Basic

approaches,” Robotics and Automation Magazine, vol. 6, pp. 82–90,
2006.


	I Introduction
	II Background
	II-A Image-Based Visual Servoing
	II-B Light Field Parameterization

	III Light Field Image-Based Visual Servoing
	III-A Continuous-domain Image Jacobian
	III-B Discrete-domain Image Jacobian

	IV Implementation & Experimental Setup
	IV-A Light Field Features
	IV-B Mirror-Based Light Field Camera Adapter
	IV-C Control Loop

	V Results
	V-A Camera Array Simulation
	V-B Arm-Mounted MirrorCam Experiments

	VI Conclusions and Future Work
	References

