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Abstract

Vision tasks are complicated by the nonuniform apparent motion associated

with dynamic cameras in complex 3D environments. We present a frame-

work for light field cameras that simplifies dynamic-camera problems, allowing

stationary-camera approaches to be applied. No depth estimation or scene mod-

elling is required – apparent motion is disregarded by exploiting the scene geom-

etry implicitly encoded by the light field. We demonstrate the strength of this

framework by applying it to change detection from a moving camera, arriving

at the surprising and useful result that change detection can be carried out with

a closed-form solution. Its constant runtime, low computational requirements,

predictable behaviour, and ease of parallel implementation in hardware includ-

ing FPGA and GPU make this solution desirable in embedded application, e.g.

robotics. We show qualitative and quantitative results for imagery captured

using two generations of Lytro camera, with the proposed method generally

outperforming both naive pixel-based methods and, for a commonly-occurring

class of scene, state-of-the-art structure from motion methods. We quantify the

tradeoffs between tolerance to camera motion and sensitivity to change, and the

impact of coherent, widespread scene changes. Finally, we discuss generaliza-

tion of the proposed framework beyond change detection, allowing classically

still-camera-only methods to be applied in moving-camera scenarios.
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Figure 1: Camera motion between times τ0 and τ1 (left) causes apparent motion in static
scene elements like the tree (top insets), making them difficult to disambiguate from genuinely
dynamic elements, like the Kiwi. We render a novel view L̃(τ1) showing scene content from
time τ0 as seen from the point of view of the camera at τ1 (bottom right). Static elements now
appear static, opening a family of dynamic-camera problems to static-camera solutions. No
3D model of the scene is required, rather the geometry implicitly encoded in the light field is
directly exploited. In the case of change detection, this process yields a closed-form solution.

Keywords: Change detection, light field filtering, plenoptic flow, light field

rendering

1. Introduction

Having a static camera simplifies a wide range of important computer vision

problems: change / motion detection, object tracking, segmentation, isolation

and removal, and a range of spatio-temporal filtering techniques including de-

noising and velocity filtering [1–4]. If the camera is mobile, however, nonuni-5

form apparent motion complicates these techniques, generally requiring struc-

ture from motion approaches which generate explicit 3D models of the scene.

These methods are conceptually, computationally and behaviourally much more

complex than their still-camera counterparts.

We show that light field cameras [5, 6] offer a simplification by allowing a10

virtual, stationary view to be rendered from a dynamic light field sequence. The

process, depicted in Figure 1, does not form an explicit 3D model of the scene.

Rather the geometry implicitly encoded in the light field is directly exploited
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to produce a virtual, stationary camera, effectively reducing moving-camera

problems to stationary-camera problems.15

The proposed framework can simplify a wide range of problems. In this work

we demonstrate the simplification of change detection, arriving at the surprising,

important and novel result that change detection can be carried out with a single

closed-form expression. To our knowledge this is the first published closed-form

solution to change detection from a moving camera in a 3D environment.20

The proposed method outperforms competing single-camera structure from

motion approaches for a commonly-occurring class of scene. Because structure

from motion jointly estimates camera velocity and scene geometry, changes in

the scene can be confused for apparent motion, leading to a significant under-

estimation of change.25

In contrast to competing methods, our solution has constant runtime, low

computational requirements, predictable behaviour, and is easily implemented

in hardware including FPGA or GPU, making it desirable in a range of chal-

lenging application domains including robotics.

The remainder of this paper is organized as follows: We discuss related work30

in Section 2 and provide background on the closed-form method of camera mo-

tion estimation from plenoptic flow in Section 3. We then describe a linear,

additive rendering method based on plenoptic flow in Section 4, and combine

the methods to effect change detection in Section 5. Section 6 shows results for

imagery captured using two generations of Lytro camera, giving quantitative35

and qualitative analyses of the method’s performance and limitations, includ-

ing explorations of the interplay between sensitivity to change and tolerance to

camera motion, and sensitivity to widespread scene changes. The paper con-

cludes with discussion and directions for future work in Section 7, including

generalization of the proposed framework over an important class of computer40

vision problems.
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2. Related Work

Change detection from mobile platforms is nontrivial due to the apparent

motion of the environment in the captured imagery. This apparent motion is

nonuniform in the case of non-planar 3D scene geometry, and so methods based45

on pixel-level statistics are insufficient for such applications. The key limitation

of these techniques is in their direct use of 2D monocular imagery in what is

fundamentally a higher-dimensional problem.

Several successful approaches to change detection have been demonstrated

under a variety of scene and camera constraints. For sequences with a static50

camera, the projection of the background onto the image plane is also static,

and so it is possible to utilize simple pixel-based statistics to accomplish seg-

mentation [1–3]. This is appealing for several reasons: It is computationally

efficient regardless of scene complexity, it is easily parallelized, and it does not

rely on identifying and tracking features, which can be problematic in noisy55

or self-similar environments. Other more sophisticated linear methods are also

possible in the case of a stationary camera. For example, the linear velocity

filters for object detection proposed in [4]. The work we present is conceptually

similar to these filters, but is also applicable when the camera is in motion.

Extension to rotating cameras exploits the lack of parallax in the motion of60

the background [7–9], and so methods similar to the static-camera case may be

employed. Similarly, approximately planar scenes with camera motion parallel

to the plane – such as in aerial surveillance – present little or no parallax, and

so similar techniques may be employed once the images are registered [10].

In the case of a freely moving camera and nontrivial scene geometry, back-65

ground elements display different projected velocities. Several approaches have

been proposed for addressing this scenario, including the use of occlusion de-

tection, and employing concepts from optical flow to perform iterative camera

motion and motion boundary estimation [11, 12].

Other interesting approaches exploit constraints on projected background70

motion in an orthographic camera, as in [13] which tracks features across the

4



image sequence, modelling background motion as a sum of basis trajectories.

Dense per-pixel labelling is then performed in a final optimization step. In [14]

motion between pairs of images is considered, for which background elements are

shown to lie on a 1D locus. This constraint is exploited to detect foreground ele-75

ments, though only low-density results are demonstrated. Dey et al. [15] present

a generalization of the epipolar constraint and propose a feature-based approach

for exploiting it. Finally, a lightweight algorithm exploiting similar ideas has

recently been demonstrated operating in realtime on mobile devices [16].

In a related light field processing paper, Smith et al. [17] render views from80

a virtual camera with a smoothed trajectory, to effect video stabilization. Our

approach differs in rendering views from a stationary virtual camera, allowing

change detection to operate simply on a per-pixel basis.

The proposed method requires no feature tracking, no explicit 3D scene

model is formed, and no iterative optimization is required. This is behaviourally85

and computationally simpler than existing methods, and yields results in con-

stant runtime.

This paper builds on the concept of plenoptic flow introduced in [18], intro-

ducing a framework for simplifying moving-camera problems, deriving closed-

form rendering from plenoptic flow, and providing a simple closed-form expres-90

sion for change detection. A more detailed treatment can be found in [19].

3. Background: Plenoptic Flow

In this work we employ a relative two-plane parameterization of light rays in

which an s, t plane defines ray position, and a u, v plane, closer to the scene at

an arbitrary distance D, defines ray direction. In the relative parameterization,95

u and v are expressed relative to s and t [19]. We employ τ to denote time.

Plenoptic flow and its precursors were first introduced to estimate camera

motion [18–20]. This operates much like motion estimation from 2D optical

flow [21, 22], but generalizing to six degree-of-freedom (DOF) motion. The

equation of plenoptic flow expresses the temporal light field derivative Lτ in100
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terms of the spatial and angular derivatives Ls, Lt, Lu and Lv, and the camera’s

translation (qx, qy, qz) and rotation (wx, wy, wz):
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where L∗ denotes the partial derivative ∂L/∂∗. Partial derivatives are estimated

using the first difference.

The equation of plenoptic flow (1) is a linear system, which we can write105

more compactly as

Av = Lτ . (2)

A closed-form least-squares solution to this linear system yields an estimate of

the camera’s motion ṽ [18, 23] – note that we have absorbed the negation of the

temporal derivatives into v to directly yield camera motion. In the following

sections we will use this motion estimate to render a novel view which aligns110

two input light fields.

4. Closed-Form Rendering with Plenoptic Flow

Each of the columns of the matrix A is shown in expanded form in (1).

Note that the matrix is shown transposed so that each column is printed as a

row, and each of these columns can be interpreted as the change in the light115

field in response to one of six separate motion components. We will refer to

these components as Lx, Ly, Lz, Lωx, Lωy and Lωz, respectively. Though they

are treated as vectors in solving for camera motion, each of the six components

can also be interpreted as a 4D light field, taking on the same dimensions as the

input. Taking this approach, we decomposed the light field depicted in Figure 2120

into its six motion components, depicted in Figure 3 – negative values are shown

as dark, positive as bright, and zero as grey. For these figures, the input was
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Figure 2: In an effect difficult to capture in print, the rightmost image displays a shifted
perspective as accomplished entirely by adding motion components to the input light field –
the virtual viewpoint has been translated towards the Lorikeet relative to the measured view,
causing the bird to appear larger.

band-limited to a normalized bandwidth of 10-0.5 to increase the visibility of

the derivatives for display.

One of the immediate applications of this decomposition is that novel views125

can now be synthesized via the weighted addition of these six motion compo-

nents to the original light field, provided the desired camera motion is relatively

small. This is difficult to demonstrate in print, given the need for relatively

small camera motions, but the two frames in Figure 2 display shifted camera

perspectives. The camera has been moved forward in the frame on the right,130

causing the bird to appear larger, with little change to the more distant back-

ground elements. The effect is accomplished entirely through addition of motion

components – in this case the displayed light field is the result of adding 8×Lz

to the input light field.

4.1. Motion Ambiguity135

Examining Figure 3, notice that the vertical spatial derivative, Ly and the

rotational derivative Lωx are visually similar, and likewise for Lx and Lωy – the

negation of Lωx is displayed to emphasize the structural similarity to Ly. This

similarity is even more pointed for scenes with less depth variation. In some
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(a) Lx (b) Lωy

(c) Ly (d) -Lωx

(e) Lz (f) Lωz

Figure 3: Plenoptic motion components for the scene in Figure 2 – note that angular and
spatial derivatives are similar, but not identical.
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circumstances, the spatial and rotational derivatives are sufficiently similar that140

the method of plenoptic flow is unable to distinguish them. This problem has

been previously noted [24], and is generally worse in cameras with narrower

fields of view, for which the ambiguity is stronger.

Fortunately, though this ambiguity can severely impede motion estimation,

it does not significantly impact the rendering of views from a stationary virtual145

camera. This will be discussed in Section 5.1.

4.2. Rendering Views from a Stationary Virtual Camera

Given two frames, we begin by finding the least squares solution to the

equation of plenoptic flow (2) to yield an estimate of the camera’s motion ṽ.

Based on this motion estimate, we wish to render a novel view using the additive150

method described in Section 4. Again the equation of plenoptic flow gives us

the tool to do this, by allowing us to derive the temporal derivative due to the

estimated camera motion:

L̃τ = Aṽ. (3)

Rendering the light field measured at time τ0 as though viewed from the camera’s

position at time τ1 can be accomplished by adding155

L̃(τ1) = L(τ0) + L̃τ . (4)

5. Change Detection

Finally, we effect change detection through pixel differencing, by taking the

difference between the measured frame L(τ1) and the estimated stationary frame

L̃(τ1). By substituting (4) and from the definition of the temporal derivative,

we find160

R = L(τ1)− L̃(τ1) = Lτ − L̃τ . (5)

In other words, the result of pixel differencing using this method simplifies to

the residual error in the equation of plenoptic flow. This is a satisfying result,
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as dynamic objects will break the rules underlying plenoptic flow, appearing as

areas of high error in the residual. This simple solution is featureless, linear and

closed-form.165

5.1. Limitations

Rendering views from a stationary virtual camera limits the range of camera

motion so that the content of interest remains in-frame. Because we employ

plenoptic flow, we introduce the further constraint that camera motion between

frames must be small, as in conventional optical flow [21, 22].170

It is an elegant result that pixel-wise change detection simplifies to the resid-

ual error in plenoptic flow. However, this means that other forms of residual

error will also appear as motion. These include occlusions and specular high-

lights, which break the assumptions underlying the equation of plenoptic flow.

Because camera motion between frames is necessarily small, the impact of these175

effects should be limited. These sources of error should also be easy to detect

and ignore – we leave this as future work.

Scenes dominated by dynamic elements can sometimes cause plenoptic flow

to describe the dynamic elements’ motion rather than the camera’s motion,

effectively breaking this solution. Changes in illumination will also, as in con-180

ventional pixel-wise change detection, cause false positives.

In Section 4.1 we described ambiguities between pairs of rotational and trans-

lational motion components within the equation of plenoptic flow. In the present

application, we are interested only in identifying elements that break the rules

of parallax motion. In this sense, we are not immediately concerned with the ve-185

locity estimate ṽ, but rather in the reconstructed temporal derivative estimate

L̃τ that it yields. As such, ambiguity in the motion components is irrelevant

to the task – these components are able to explain the temporal derivative, but

not the dynamic scene elements, and so serve our purpose despite the ambiguity

in the motion estimate.190
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6. Experiments

We applied the method of plenoptic residuals to pairs of images captured us-

ing commercially available Lytro consumer-grade plenoptic cameras. The results

in the present section were captured with a first-generation Lytro, while those

in Sections 6.1 onward were captured using a Lytro Illum second-generation195

camera. The cameras were calibrated and imagery rectified using the MAT-

LAB Light Field Toolbox [25]. For the Illum, pixels near the edges of lenslets

were discarded, as these did not conform well to the simple distortion model

employed in [25].

In poorly-lit scenes a hyperfan volumetric focus filter [26] was applied to200

improve contrast and reject noise, while maintaining depth of field and 3D scene

information. We applied a numerically stable form of plenoptic flow, including

the method for directly estimating derivatives from rectified light field imagery

described in Section 5.3.1 of [19]. Finally, we computed the plenoptic residual (5)

to build a map highlighting dynamic scene elements.205

The top row of Figure 4 shows two input frames with a small inter-frame

camera motion and a single dynamic scene element. The center row shows

the magnitude of the difference between frames Lτ , as computed after band-

limiting, for plenoptic flow (left), and the plenoptic residual R (right). The

bottom row highlights dynamic scene elements in red using Lτ and R. The210

results in Figures 4(c) and (e), representative of naive pixel differencing, show

significant sensitivity to apparent motion. Though imperfect, the plenoptic

residual results in Figures 4(d) and (f) show significant attenuation of apparent

motion, while retaining genuine changes.

Additional results are shown in Figure 5. Each of the three tests captured215

both dynamic scene elements and nonuniform apparent motion due to a change

in camera pose. The left column depicts the result of naive frame differencing,

while the right shows the proposed method of plenoptic residuals. Notice the

correctly identified shadow change in the first row, and that the two highlights in

this row correspond to the original and destination locations of the toothpick in220
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Two frames (top) showing both apparent motion and a dynamic scene element. The
temporal derivative (c) represents a naive pixel-differencing approach; the plenoptic residual
(d) shows significantly less sensitivity to apparent motion while retaining dynamic elements.
The first input frame is highlighted using each of these results (bottom). Notice that the pen
rotated about its center, thus the pattern of decreasing velocity near its pivot.
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Table 1: Energy in the naive pixel difference Lτ and the plenoptic residual R

Scene Lτ (dB) R (dB) Ratio (dB)
Jar -31.81 -35.848 4.0386
Jar -27.634 -31.029 3.3954
Jar -36.452 -43.197 6.7448
Pen -23.805 -28.842 5.037
Pen -34.679 -39.917 5.2385
Toothpicks -33.064 -33.55 0.48605
Toothpicks -30.576 -32.087 1.5104
Toothpicks -39.247 -42.276 3.0284
Mean -29.684 -33.439 4.0905

a relatively large translation. In the bottom row, the square object was removed

between frames, while in the center row it was rotated.

Table 1 summarizes the signal energy resulting from naive pixel differencing

and the method of plenoptic residuals, and their ratio. Values are shown for

eight pairs of images from the three test scenes depicted in Figures 4 and 5.225

The tabulated values represent signal energy expressed in dB, for input light

fields normalized to a peak value of one. The mean ratio of 4 dB establishes

that the plenoptic residuals method is more than twice as selective as naive

pixel differencing. Referring to Figures 4 and 5, we confirm the method has

selectively attenuated static scene elements while passing dynamic objects.230

6.1. Tolerance to Camera Motion

One of the limitations of the proposed method is that camera motion be-

tween frames must be small. There is an interplay between input bandwidth,

sensitivity to change, and tolerance to camera motion. To demonstrate this we

measured the performance of plenoptic residuals over a range of camera motion235

magnitudes for a range of input bandwidths. A first, fixed frame was compared

with a series of frames showing increasingly more camera motion. The camera

was translated along x from 1 to 10 mm in increments of 1 mm. The test was

run on a static scene, shown in Figure 6(c), and on a dynamic scene, for which

the second and subsequent frames had a change as seen in Figure 6(d).240
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Additional results demonstrating the method of plenoptic residuals – the left column
demonstrates naive temporal differencing, while the right demonstrates the proposed method.
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(a) Static scene performance (b) Dynamic scene performance

(c) Static scene (d) Scene after change

Figure 6: Performance varies with camera motion and input bandwidth (BW) for (a) the
static scene shown in (c); and (b) the same scene with a change introduced, as shown in (d).
In both plots lower values represent better performance, and the red path highlights optimal
bandwidth as a function of camera motion. For (a) performance is shown as the ratio of
false positive change detection to naive pixel differencing, and for (b) as the ratio of false
positive to true positive change detection. Note that to tolerate larger camera motions the
input bandwidth must be decreased, but this limits sensitivity to change as manifested to the
right in (b). Each plot represents the mean over two experiments.
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Experiments for both static and dynamic-scenes were repeated twice, with

strong agreement between experiments. The average results are shown in Fig-

ure 6. In the case of the static scene, performance was evaluated as the ratio of

false positive change detected to the estimate yielded by naive pixel differenc-

ing. Because the scene was static, the ideal result is that no change be detected,245

and so lower values are better. Notice that for higher camera displacements

the optimal input bandwidth, highlighted in red, is lower. This is because the

coherence of the input must be increased to tolerate larger shifts.

For the dynamic scene, hand-labelled ground truth was used to find the ratio

between false positive change detection and true positive change detection –250

again, lower values are better. The shape of the result, shown in Figure 6(b), is

similar to the static case, except for a more prominent decrease in performance

for very small bandwidths. This is due to a decrease in sensitivity to change,

which does not appear in the static experiment.

6.2. Comparison to Structure from Motion255

As discussed in Section 2, most competing change detection methods are

either sparse or much more complex than the proposed method. Indeed, in

single-camera scenarios change detection generally requires joint estimation of

the scene geometry and the camera’s motion, which can only be accomplished

using sophisticated, iterative optimization methods [27, 28]. By estimating scene260

geometry and camera motion, two views of the scene can be aligned, and a

difference computed to identify dynamic elements.

The depth information implicitly captured by the light field confers two ad-

vantages: 1) it allows simplification of change detection to a single-step, closed-

form solution, with no explicit geometry estimation required, and 2) the result-265

ing method is robust to an important failure mode common to most if not all

competing single-camera techniques.

When elements of the scene move with a projected velocity consistent with

apparent motion due to the camera’s velocity, they can appear as stationary
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(a) Dynamic scene (b) Actual change

(c) Disparity estimate (d) Estimated change

Figure 7: State-of-the-art single-camera methods fail for projected motion parallel to apparent
motion. Here camera motion is constrained to translation along x, reducing depth estimation
to stereo matching. The scene (a) has a dynamic element translating to the right, as seen
from the temporal derivative (b), but this motion is misinterpreted as disparity due to depth
(c), resulting in an incorrect change estimate (d).
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objects at shifted depths. We demonstrate this effect in Figure 7, and quantify270

it in Figure 8.

Although the effect applies to dense structure from motion in general, we

restrict our attention to the case of a camera moving with known velocity along

x. Under these circumstances, dense structure from motion simplifies to dense

stereo matching. We estimate disparity using a semi-global block matching275

approach [29], and use this disparity to reproject the first frame as though seen

from the point of view of the second frame. Because this simplified approach is

a subset of structure from motion with fewer sources of error, we employ it as

an upper bound of performance over more general approaches.

The scene shown Figure 7(a) includes an object moving horizontally along280

x. The temporal derivative for a horizontal shift of 4 mm, as seen from a

stationary camera, is shown in (b). Figure 7(c) shows the disparity estimate,

in which the motion of the dynamic object has yielded an overestimation of

disparity. The resulting change estimate, shown in (d), shows how the motion

of the test pattern has been underestimated, as it has been misinterpreted as285

depth.

To better understand this failure mode, we tested a variety of motion types

and compared the change estimates from naive pixel differencing, plenoptic

residuals, and the stereo-based approach. An important parameter of the stereo

approach is the maximum disparity, which we tested at 16 and 32 pixels, with290

the minimum fixed at 0.

Four experiments were run over two repetitions each, with results shown

in Figure 8. In each experiment a fixed frame was compared to a series of

frames showing increasing motion. Because the camera was fixed, the naive

temporal derivative acts as ground truth. All traces are normalized to the295

maximum temporal derivative, and the heavy lines indicate the mean over the

two repetitions shown as dashed lines.

The scene for Figure 8(a) showed only vertical motion and acts as a con-

trol, verifying that the stereo-based change detection method operates well for

projected changes orthogonal to apparent motion. The scene for (b) showed300
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(a) Translation in y (b) Translation in x

(c) Rotation about y (d) Translation in x, z

Figure 8: Evaluating state-of-the-art single-camera methods. The camera is fixed so that
naive pixel differencing represents the ground truth, and stereo matching represents an upper
bound on the performance of structure from motion approaches. (a) For vertical scene motion,
all methods perform well, while stereo methods suffer for scenes showing (b) translation along
x, (c) rotation about y, or (d) diagonal translation in x, z. The larger motions in (b) and
(d) exceed the maximum 16-pixel disparity of Stereo16, causing an increase in performance
compared with Stereo32. Heavy lines indicate the mean over two repetitions, shown as dashed
lines.
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translation of the test pattern to the right along x, while (c) showed rotation

about y, i.e. with projected motion to the right, and (d) showed diagonal motion

to the right and away from the camera at about a 45 degree angle in x, z.

Plenoptic residuals performed well across all four motion types, while the

stereo method showed poor performance for examples with horizontal projected305

motion. Note that fixing a maximum stereo disparity of 16 yielded improved

results where the projected motion exceeded 16 pixels, as can be seen in Fig-

ures 8(b) and (d), but not in (c), for which projected motion did not exceed 16

pixels.

6.3. Maximum Scene Motion310

When motion dominates a scene it can be confused for apparent motion,

causing dynamic elements to be misinterpreted as being static. To demonstrate

this we constructed a scene out of 12 movable tiles, and compared the change

estimates for naive pixel differencing, plenoptic residuals, and the stereo-based

method described above. A first, fixed frame was compared to a series of frames315

in which tiles were displaced one at a time. Again the camera was fixed, so that

naive pixel differencing represents the ground truth.

For the first two experiments, shown in Figures 9(a) and (b), tiles were

translated one at a time, 1 mm to the right, whereas in 9(c) and (d) they

were rotated randomly by a few degrees. For the random rotations plenoptic320

residuals performed well, while for the translations it did not, showing decreasing

estimates as more of the scene moved. The coherent translation of the tiles was

consistent with apparent motion in that it could have been caused by camera

displacement, while the random rotations were not, and so only the former

caused a loss in performance.325

When scene dynamics are consistent with apparent motion it should be pos-

sible to fool plenoptic flow into believing there is no scene change whatsoever.

To prove this we performed a simulation, depicted in Figure 9(e), in which an

increasing percentage of the scene was artificially shifted. The experiment was

repeated over a range of shift magnitudes between 1 and 10 pixels. For small330
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(a) Coherent scene motion (b) Coherent scene motion

(c) Random scene motion (d) Random scene motion

(e) Simulated coherent motion

Figure 9: (a),(b) Coherent, small horizontal motion across the scene yields poor results as
plenoptic flow is fooled into thinking the camera has moved rather than the scene; (c),(d) ran-
dom scene motion does not cause the same problem, as it cannot be explained by camera
motion; (e) Simulated coherent motion, with motion ranging from 1 to 10 pixels in magni-
tude: Small motion across the entire frame yields the worst results. Stereo performs poorly
throughout these experiments, as explained in the previous section.
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pixel shifts of the whole image, all motion was interpreted as camera motion,

yielding a plenoptic residual near zero. Larger shifts showed less dramatic re-

sults, however. This is consistent with the results shown in Figure 6: Large

motions beyond the coherence of the scene break plenoptic flow, and so rather

than being misinterpreted as camera motion, these were are at least partially335

interpreted as scene motion.

Note that throughout these experiments, the stereo-based method signifi-

cantly underestimated change due to the presence of horizontal motion, even in

the case of random tile rotations as depicted in Figures 9(c) and (d).

7. Discussion and Future Directions340

We presented a general approach for converting moving-camera problems

into stationary-camera problems. No depth estimation or other complex scene

modelling is required – apparent motion is disregarded by directly exploiting

the geometric information implicitly encoded by the light field.

Using this approach, we derived a method for closed-form change detec-345

tion from moving platforms. By effecting both camera motion estimation and

rendering using closed-form plenoptic flow, we showed that pixel-wise change

detection from a virtual still camera can be found from the residual error in

plenoptic flow. This is an important, surprising and useful result: Its constant

runtime, low computational requirements, predictable behaviour, and ease of350

parallel implementation in hardware including FPGA and GPU make it desir-

able for deployment in demanding embedded applications including robotics.

We evaluated the method of plenoptic residuals using first- and second-

generation Lytro cameras. We showed the method to outperform naive 2D

per-pixel methods, which are sensitive to nonuniform apparent motion of the355

scene, and sophisticated structure from motion approaches, for the important

case of projected motion parallel with apparent motion due to the camera’s

velocity. We quantified the tradeoff between tolerance to camera motion and
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sensitivity to change, and the susceptibility of the proposed method to coherent,

widespread scene movement.360

As future work it should be possible to derive a more conventional approach

that nevertheless exploits the depth information captured by light field cameras.

For example, pairs of virtual views could be rendered for each camera pose and

employed in stereo structure from motion. We expect such approaches to show

less sensitivity to apparent motion than their monocular counterpart, but that365

plenoptic residuals will remain behaviourally and computationally simpler and

therefore attractive for hardware implementation and embedded deployment.

The method of plenoptic residuals is susceptible to false positives where the

assumptions underlying plenoptic flow are broken. These include occlusions,

specular reflections, and changes in illumination. A method of detecting and370

explicitly ignoring these phenomena would be desirable, both in change detec-

tion and in improving the performance of plenoptic flow-based visual odometry.

Finally, this work started with a framework to efficiently and linearly co-

register light field images to simplify a class of computer vision problems. We

leave as future work demonstration on other problems in this class, including375

object tracking, segmentation, isolation and removal, and a range of spatio-

temporal filtering techniques including denoising and velocity filtering [1–4].
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