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Abstract— While an exciting diversity of new imaging devices
is emerging that could dramatically improve robotic perception,
the challenges of calibrating and interpreting these cameras
have limited their uptake in the robotics community. In this
work we generalise techniques from unsupervised learning to
allow a robot to autonomously interpret new kinds of cameras.
We consider emerging sparse light field (LF) cameras, which
capture a subset of the 4D LF function describing the set of
light rays passing through a plane. We introduce a generalised
encoding of sparse LFs that allows unsupervised learning of
odometry and depth. We demonstrate the proposed approach
outperforming monocular, stereo and conventional techniques
for dealing with 4D imagery, yielding more accurate odometry
and depth maps and delivering these with metric scale. We
anticipate our technique to generalise to a broad class of LF and
sparse LF cameras, and to enable unsupervised recalibration
for coping with shifts in camera behaviour over the lifetime of
a robot. This work represents a first step toward streamlining
the integration of new kinds of imaging devices in robotics
applications.

I. INTRODUCTION

Integrating new imaging devices into robotics applications

is a skilled and challenging task. While an exciting vari-

ety of new imaging capabilities is emerging, dealing with

calibration, compensating for non-idealities, and interpreting

new forms of visual information have historically been time-

consuming. This has limited the uptake of new visual sensors

in robotics.

Emerging imaging technologies could allow robots to see

better in a range of scenarios. Recent capabilities include

imaging around corners, directly observing light propagation,

adaptive and long-range depth sensing, and imaging through

occluders like rain, snow, and fog using light field (LF)

cameras [1]–[5]. Before these technologies can be used in

robotics we must find ways of dealing with their unique

characteristics.

In this work, we take a step towards the automated inter-

pretation of new cameras by adapting unsupervised learning

techniques to deal with sparse LF cameras. LF cameras in

general have been shown to offer improved performance

in low light and underwater, and by simplifying conven-

tionally complex tasks like visual odometry and change
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Fig. 1. We propose an unsupervised approach to interpret new imaging
devices like the EPIModule from EPIImaging LLC shown here. We propose
a novel encoding scheme that benefits from the view diversity of these
devices while allowing a broad family of cameras to be used without manual
intervention. To demonstrate the technique we learn visual odometry and
depth estimation, delivering metric results with greater accuracy and detail
than prior approaches.

detection [4]–[7]. A full LF camera captures a regular grid

of views, yielding a 4D image that encodes the behaviour of

light in terms of both ray position and direction. A sparse

LF camera like the one shown in Fig. 1 captures a subset

of these views. This has been shown to offer many of the

same advantages as LFs [8], [9] while using a fraction

of the imaging bandwidth. It does however require more

sophisticated algorithms for carrying out tasks like visual

odometry.

To make sense of these cameras, we leverage recent work

in unsupervised learning that shows how using prediction as

a training signal one can learn useful tasks without need for

costly labelled data [10]–[12]. We show how to generalise

this idea to estimate odometry and depth from sparse LF

cameras, as a first step toward automating the interpretation

of general imaging devices for robotics applications.

Our key contributions are:

• We generalize unsupervised odometry and depth esti-

mation to operate on sparse 4D LFs;

• We introduce an encoding scheme for sparse LFs appro-

priate to odometry and shape estimation, show it outper-

forming naı̈ve LF stacking and focal stack approaches,



and evaluate using full vs. partial LF reconstruction as

a training signal; and

• We demonstrate the proposed methods outperforming

monocular and stereo approaches, yielding more accu-

rate trajectories and depth maps, with known scale.

To validate our method we mounted an EPIModule from

EPIImaging, LLC on a UR5e robotic arm, as shown in

Fig. 1. We collected 46 trajectories in a variety of indoor

scenes, yielding 8298 LFs, each with 17 views, and all with

accurately known poses as enabled by the robotic arm. We

are releasing all data and code along with the paper1.

To evaluate our method we compare against monocular

and stereo approaches, and more conventional LF-based

stacking and focal stacking methods. We also compare two

prediction modes, one dealing only with the central LF

view, and the other reconstructing the entire LF, drawing

on a prior estimate of the inter-camera spacing and cam-

era geometry. We show the proposed methods outperform

monocular, stereo and naı̈ve LF-based approaches in terms

of visual odometry accuracy, depth estimation and qualitative

3D level of detail. We also report training and inference

times, showing that the feasibility of our method for practical

robotic applications.

Our approach captures both the geometric and textural

information present in sparse LFs, and we expect it to work

well for other types of cameras with regular overlapping

views. This includes regularly spaced 1D and 2D camera

arrays, sparse cameras like the EPIModule, and lenslet-based

plenoptic cameras like the Lytro and Raytrix devices. A robot

equipped with this capability could swap cameras in and out,

requiring only an unsupervised training period to adapt to

new imaging hardware. We anticipate this to be of interest

in evaluating new devices and sensor placements in practical

applications.

Limitations: Although our method is unsupervised and

does not require calibration, metric pose and depth require

an estimate of the camera layout, including the distances

between camera lenses. The module employed in this work

conducts onboard distortion correction, but we anticipate the

method would work without this feature. Importantly, the

learning process can be employed over the lifespan of a

robot, allowing it to automatically adapt to shifts in extrinsic

or intrinsic camera properties associated with temperature

fluctuations, vibrations and fatigue.

II. RELATED WORK

LF cameras encode light in a 4D structure that captures

light’s behaviour in terms of both ray position and direc-

tion [13]. These conventionally parameterise light rays in

terms of their points of intersection with two reference

planes: an s, t plane, close to the camera array, captures

ray position. A second u,v plane placed at an arbitrary

distance D and parallel to the first captures ray direction. The

combination s, t,u,v uniquely identifies a pixel measured by

an LF camera, and a ray in world space.

1https://roboticimaging.org/Projects/LearnLFOdo/

LFs have been shown to improve imaging performance in

challenging conditions [5], [14] and to simplify a range of

tasks, offering effective and sometimes closed-form solutions

to both depth estimation and visual odometry [6], [15], [16].

Sparse LFs capture much of the same information [8], [9],

but interpreting their imagery is less obvious, and different

configurations offer different tradeoffs in robustness and the

algorithmic complexity required for interpretation. We take

the sparse LF camera as representative of a class of cameras

with overlapping and redundant views. As a step towards

demonstrating general autonomous interpretation of newly

developed imaging devices, we show how unsupervised

learning can be adapted to deal with this class of cameras. We

anticipate that the proposed method applies to linear camera

arrays, combinations of linear arrays as in the EPIModule

shown in Fig. 1, and full LFs as captured by arrays and

lenslet-based cameras.

The use of unsupervised learning has recently emerged

as a means of accomplishing complex tasks by cleverly

combining prior knowledge of the problem and use of

prediction as a feedback mechanism. This has been used to

predict camera motion and depth from both monocular and

stereo cameras [10]–[12], [17]–[20]. These works typically

separate the problem into two parts: pose estimation and

depth estimation, each handled by a separate network. In the

case of stereo cameras some prior knowledge of the camera

setup, generally the inter-aperture spacing, is used to obtain

metric results [11], [12]. We draw inspiration from this work

and extend it to handle new kinds of cameras.

While prior work has established how to handle monocular

and stereo inputs, it is less obvious how one should operate

on 4D LFs, let alone sparse versions of the same. Getting

this kind of data into a 2D convolutional neural network

(CNN) is not obvious. Previous work has sliced the 4D LF

and concatenated the resulting 2D slices into stacks [21],

superimposed multiple shifted variations of these 2D slices

into focal stacks [22] and used a combination of the two [23].

More sophisticated approaches have sliced in different pairs

of dimensions, or interleaved slicing strategies [24].

In this work we adopt previous work applying machine

learning to LFs, and extend them by slicing and concatenat-

ing in multiple dimensions, offering the network a mixture

of forms of information. We slice in the textural (u,v)

dimensions, capturing scene appearance, as well as epipolar

dimensions (s,u and t,v), capturing scene geometry. We

further build on this by applying a layer of convolutional

features to the stacked epipolar slices, similar to the approach

used for depth estimation by Shin et al. [25]. This offers the

ability to extract salient geometric features prior to estimating

depth and pose. It also has the added advantage of placing the

two forms of information, textural and epipolar, in a similar

space, facilitating learning. Note that our approach allows

the use of conventional 2D CNNs, and while some work has

generalised to using 3D or even 4D convolutions [26], this

can be more computationally expensive and loses the ability

to exploit existing 2D architectures.

https://roboticimaging.org/Projects/LearnLFOdo/


To build networks that estimate depth and pose, we lever-

age prior work that applied a hand-crafted but differentiable

warping function to estimate a future image from a prior

image, depth map, and relative pose [10]. As in previous

approaches employing stereo imagery [12], we consider all

input images in the warping process, yielding an estimated

LF with the same dimensions as the input LFs. This requires

a generalisation of the 2D warping function to operate on

LFs, which we present here along with a comparison to the

more naive single-view approach.

III. METHODS

A. Dataset

LF images were collected using an EPIModule from

EPIImaging, LLC, mounted on a robotic arm, while ex-

ecuting 46 trajectories. Ground truth poses were recorded

for evaluation. The EPIModule captures images from 17

sub-apertures arranged in a plus sign pattern, as shown in

Fig. 1. The captured images were rectified using off-the-shelf

rectification enabled within the module and downsampled to

a size of 256×192 pixels. A central crop of 224×160 pixels

was then taken from all the images. The dataset is split into

37 trajectories for training, 6 trajectories for validation and

3 trajectories for testing. The test split also contains objects

not present during training and validation.

B. Network Architecture

In keeping with the aim of extending existing unsupervised

learning approaches for depth and pose estimation from

monocular and stereo images to LFs, we draw inspiration

from the network architecture presented in [10]. The three

main components of the network are the following.

• A single view depth estimation network that predicts

per pixel depth for an input image. We use the encoder-

decoder architecture of ‘DispNet’ [27], with skip con-

nections, as the depth estimation network.

• A multi-view pose estimation network (similar to [10],

[19], [28]) that takes as input images from two nearby

viewpoints and estimates the relative pose of one view-

point with respect to the other.

• A differentiable warp module that couples the depth and

pose estimation networks by minimizing a loss based

on view synthesis. This loss is the photometric error

between a target image and a reference image warped

to the viewpoint of the target, using the estimated depth

and pose.

Generalizing the architecture to sparse LFs poses the

question of how best 4 dimensional data can be arranged

as 2 dimensional slices, so that it forms an informative

input to convolutional neural networks that predict depth and

pose. Prior work [24] approached this challenge with the

assumption that a complete grid of 2D images is available.

However, the specific configuration of the apertures in the

imaging module used in this work (see Fig. 1), prohibits

doing so without introducing significant redundant data.

Therefore, we address this challenge by proposing a novel

encoding scheme that captures both geometric and textural
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Fig. 2. Proposed architecture: Encoders convert each sparse 4D input LF
L into a form L̃d and L̃p ingestible by 2D CNNs. From the encoded L̃d

k , the

depth network estimates per-pixel depth Dk , and from L̃p the pose network
estimates the pose k−1T̃k of the camera from time k−1 to time k. The two
networks drive a differentiable warp that predicts an LF Îk by warping Ik−1

to time k. The photometric loss Lph between the true and estimated LFs
drives training of the networks and encoders. We evaluate different encoding
schemes, and use of 2D vs. 4D warping and photometric loss.

information from the LF. The complete network architecture

with the encoders is shown in Fig. 2.

C. Sparse LF Image Encodings

In order to motivate the choice of the proposed encoding

scheme, we first present two approaches of stacking LFs as

2D slices in the textural dimension followed by the proposed

approach where slicing is performed in the epipolar dimen-

sions. The three encoding schemes are illustrated in Fig. 3.

1) Volumetric Stack: A volumetric stack is obtained by

stacking images of the sparse LF along the (u,v) direction,

i.e. the colour channel dimension. This was proposed and

evaluated in [24], for material classification. With this encod-

ing, we expect a CNN to learn features related to parallax,

occlusion and depth. For a camera array with N sub-apertures

and an image size of (H ×W ) pixels, the volumetric stack

has a size of (N ×H ×W ) pixels.

2) Focal Stack: Superimposing images from each sub-

aperture and averaging the intensity at each pixel results in

an image where some regions exhibit interference and are

‘out-of-focus’, while other regions are ‘in-focus’ and remain

crisp. Shifting pixels of different sub-apertures by varying

amounts prior to superposition, results in images that are

in focus at different distances from the camera. Stacking

superimposed images, with different planes of focus, along

the colour channel dimension constitutes the focal stack. As

the focal stack encodes depth in the form of interference at

each region, we expect a CNN to use this information to

estimate depth and pose [22]. However, the trade-off is that

aliasing artefacts in the focal stack may affect training. For
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Fig. 3. Encodings of a sparse LF. (a) Volumetric stacking of images
along the colour dimension, (b) Superimposed images in-focus at varying
distances from the camera (notice the change in focus from the object in the
foreground to the curtain in the background) and the corresponding focal
stack, (c) the horizontal and vertical tiling of EPIs and (d) the proposed

encoding scheme where the horizontal and vertical tiled EPIs pass through
a single CNN layer encoder. The resultant feature maps are stacked to form
the proposed encoded EPI stack.

N planes of focus and an image size of (H ×W ) pixels, the

focal stack has a size of (N ×H ×W ) pixels.

3) Tiled Epipolar Plane Image Stack: An EPI [29] is

a slice of the LF in the s,u or t,v direction and encodes

depth and occlusion information in the slope of the sheared

lines in the image. In order to utilize this information, we

propose tiling these images, vertically for the s,u slices

and horizontally for the t,v slices, as shown in Fig. 3c.

For a camera array with N sub-apertures, such a tiling

results in images that are tall ((N ·W ×H) pixels) and wide

((W ×N ·H) pixels) respectively.

Passing these tiled images as input to the depth and

pose estimation networks is not trivial. Instead of modifying

the base architecture to accept these images as inputs, we

propose the use of an additional convolutional layer on the

tiled EPIs, that downsamples them to the shape expected by

the networks. Both the wide and tall tiled EPIs are convolved

with a kernel of size (N ×N), but with a horizontal stride

of N for the wide tiled EPI and a vertical stride of N for

the tall tiled EPI. This is followed by a Rectified Linear

Unit (ReLU) activation layer. The resulting encoded EPIs

are stacked along the colour channel to form the Encoded

EPI stack, as shown in Fig. 3d.

We input the encoded EPI directly to the depth estimation

network. However, for the pose estimation network, we ad-

ditionally concatenate images from the volumetric stack. We

hypothesize that by stacking slices in the epipolar dimension

with slices in the textural dimension, the pose estimation

network can leverage both structural and semantic features

from the different input spaces during the learning process.

On the other hand, to improve the ability of the depth

network to generalize to unseen objects and not rely on

global features in the image, such as the background and

the table, we omit the slices in the textural dimension in its

input.

D. Loss Formulation

Given a pair of successive viewpoints, with indices

(k−1,k), from which LFs (Lk−1,Lk) are captured, we

compute the corresponding encoded LFs
(

L̃d
k , L̃

p
k−1, L̃

p
k

)

as

described earlier, where the superscripts d and p indicate the

specific encoding for the depth and pose estimation networks

respectively. With L̃d
k as input, the depth estimation network

outputs the pixel-wise depth map2, D̂c,k. We interpret this as

the depth map of the central sub-aperture, c, of the imaging

module corresponding to the LF at viewpoint k. Next, given

L̃
p
k−1 and L̃

p
k as inputs the pose estimation network outputs

the relative pose c,k−1T̂c,k, which we interpret as the relative

pose of the central sub-aperture of the imaging module

at viewpoint k with respect to the same sub-aperture at

viewpoint k−1.

Photometric consistency loss can then be computed as

Lph =
1

n

n

∑
i

|Ic,k(i)− Îc,k(i)|, (1)

where i is the index over the pixel coordinates, n is the

number of pixels in the image, Îc,k is the image Ic,k−1 of

the central sub-aperture at viewpoint k − 1 warped to the

viewpoint k.

The warped image, Îc,k, is computed by sampling the im-

age Ic,k−1 with the projected homogeneous pixel coordinates

pc,k−1 using differentiable bilinear sampling [30].

The projected homogenous pixel coordinates pc,k−1 are

computed from the homogeneous pixel coordinates pc,k as

pc,k−1 ∼ K c,k−1T̂c,k D̂c,k K−1 pc,k, (2)

where K is the matrix of intrinsic parameters of the central

sub-aperture. This is consistent with the approach presented

in [10].

Additionally, we also employ the multi-scale smoothness

loss [10], [19], [20], [31], to overcome the issue of poor

training in low texture regions. Through empirical evaluation,

we also found that replacing the smoothness loss with a

loss based on total-variation error [32] after a few iterations

of training helped reduce noisy estimates of depth while

preserving edges, especially in low-texture regions. The total

loss was thus a weighted sum of the individual loss terms.

E. Single-warp versus Multi-warp Reconstruction

We refer to the pipeline described thus far as the Single-

warp reconstruction pipeline. We highlight that the single-

warp pipeline requires only the knowledge of the intrinsic

2The network actually estimates inverse depth. For improving readability
we omit this technicality.



camera parameters of the sub-apertures and does not rely

on the arrangement of the individual sub-apertures within

the imaging module. However, this pipeline suffers from the

issue of scale ambiguity.

We address this issue by taking into account the additional

information available when imaging a scene using a camera

array. Instead of using the photometric warp to reconstruct

the image of a single sub-aperture, the pipeline is modified

to reconstruct the LF. Unlike the previous case, the depth

estimation network outputs the depth of M sub-apertures

instead of a single sub-aperture, while the pose estimation

network remains unaltered. The photometric loss is now

computed between the corresponding M sub-apertures across

the viewpoints, and the total loss is the mean of the individual

losses.

Therefore equations (1) and (2) can be modified as

Lp =
1

M ·n ∑
j∈M

n

∑
i

|I j,k(i)− Î j,k(i)|, (3)

and

p j,k−1 ∼ K cTj
−1

c,k−1T̂c,k cTj D̂ j,k K−1 p j,k,∀ j ∈ M (4)

When j represents the index of a non-central sub-aperture

then cTj is the pose of a non-central sub-aperture relative

to the central sub-aperture. In this work, we assume that

this transformation is known, up to a scale factor, and is

constant for all the sub-apertures. However, as stated earlier,

this assumption may be relaxed and in turn be predicted

using using a photometric consistency constraint similar to

(1) imposed between sub-apertures of the same viewpoint.

One can see that this formulation of the photometric error

in (3) penalizes an incorrect estimate of scale because an

error in the depth estimate results in a large photometric

error for the other sub-apertures. We call the reconstruction

pipeline with this modification the Multi-warp reconstruction

pipeline.

IV. RESULTS

A. Implementation Details

We evaluate three different encodings of the sparse LF as

described in Sec. III-C. We consider two variants of the focal

stack, one with 5 planes of focus (coarser spacing between

the planes) and one with 9 planes of focus (finer spacing

between the planes). We refer to the two configurations as

focalstack-5 and focalstack-9 respectively. Furthermore, we

compare the performance of all the encoding schemes and re-

construction pipelines against the monocular depth and pose

estimation approach from [10], and a stereo based approach

from [12] utilizing only photometric and smoothness losses.

For the proposed encoding scheme images from central

sub-aperture and its 4 closest sub-apertures constitute the vol-

umetric (u,v) stack that is concatenated with the EPI feature

maps. These sub-apertures are also used for computing the

photometric error in the multi-warp reconstruction pipeline.

All the networks were trained for 100 epochs, with

weights initialized from a Xavier uniform distribution. The

Adam [33] optimizer was used during training with a

momentum of 0.9 and β of 0.999. We weigh down the

smoothness and the total variation loss by a factor of 0.3.

B. Depth Estimation
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Fig. 4. Estimates of depth in the single-warp pipeline for a planar object
placed at multiple distances from the imaging module. The single-warp
pipeline suffers from scale ambiguity and as a result the estimates are far
from the ground truth depth (black).
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Fig. 5. Estimates of depth in the multi-warp pipeline for a planar object
placed at multiple distances from the imaging module. The network trained
with the proposed encoding scheme (purple) is able to estimate depths that
are reasonably close to the ground truth depth (black), while with the other
encoding schemes the network struggles to learn accurate scale. During
training most objects were placed 0.4-0.7m away from the imaging module,
and scenes at 0.8m yield reasonable results despite being outside this range.

1) Quantitative Evaluation: To evaluate the accuracy of

the depth estimates, we placed a planar object, with a random

texture on it, at multiple known distances away from the

EPIModule, fronto-parallel to the imaging module. Depths

estimated for each of the encodings was compared against

the ground-truth depth. These are presented in Tab. I and

illustrated in Fig. 4 and Fig. 5. Due to the aforementioned

ambiguity of scale in the monocular and single-warp re-

construction pipelines, the estimated depth is far from the

actual value (see Fig. 4), despite some networks being able to

estimate qualitatively good shape (see Fig. 6). On the other

hand while the multi-warp pipeline improves overall scale

estimate, only our method shows a trend that follows the
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Fig. 6. Depth estimates for a few representative images of the dataset for the different input encodings: The network trained with the proposed Encoded
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3D level of detail. It is able to generalize well to previously unseen objects (column 4) and distinguish thin structures (columns 4 and 5), where the other
encodings struggle. Note that the colour scales are different between the single-warp and multi-warp pipelines and were chosen for clear visualization.

true depth values, albeit with some error at close and far

distances from the module. Note that during training most

scene content was 0.4-0.7 m from the imaging module, but

the proposed encoding generalizes somewhat beyond this

range as seen in Fig. 5.

2) Qualitative Evaluation: Depth estimates for represen-

tative images of the test dataset are shown in Fig. 6. For both

the warp pipelines, the network trained with the proposed

encoding outperforms the other encoding schemes, with

better shape estimation and greater level of detail in the

depth estimates. Our encoding also enables the network to

estimate the overall shape of challenging and thin structures

(last two columns in Fig. 6) and at the same time generalize

well to previously unseen objects (column 4), while the other

methods, except stereo, fail to even detect the object. This

clearly shows the advantage of incorporating both textural

and geometric information in the encoding.

C. Pose Estimation Results

We evaluate pose estimation by computing the frame-to-

frame Relative Pose Error (RPE) [34] between the estimated

relative pose of successive camera frames and the ground

truth relative pose of the same frames. The evaluation was

performed on the test split, the results of which are summa-

rized in Tab. II. Our encoding scheme outperforms all the



TABLE I

QUANTITATIVE EVALUATION OF DEPTH ESTIMATES: THE NETWORK WITH THE PROPOSED ENCODING SCHEME ESTIMATES VALUES CLOSE TO

GROUND TRUTH IN THE MULTI-WARP RECONSTRUCTION PIPELINE

Method
Distance of planar object from the EPIModule [m]

0.4 0.5 0.6 0.7 0.8 Overall
Mean Std.dev Mean Std.dev Mean Std.dev Mean Std.dev Mean Std.dev RMSE [m]

Monocular 0.275 0.008 0.258 0.007 0.263 0.006 0.283 0.004 0.268 0.004 0.359

S
in

g
le

volumetric stack 0.255 0.009 0.263 0.011 0.287 0.011 0.293 0.005 0.295 0.005 0.345
focalstack-5 0.266 0.010 0.271 0.010 0.276 0.007 0.296 0.010 0.307 0.006 0.341
focalstack-9 0.270 0.016 0.276 0.009 0.279 0.011 0.306 0.011 0.302 0.007 0.339

ours 0.224 0.016 0.260 0.011 0.276 0.004 0.266 0.003 0.286 0.004 0.359

M
u

lt
i

volumetric stack 0.514 0.031 0.522 0.018 0.529 0.019 0.558 0.016 0.548 0.006 0.143
focalstack-5 0.455 0.040 0.449 0.030 0.454 0.044 0.505 0.029 0.507 0.025 0.174
focalstack-9 0.723 0.031 0.707 0.024 0.722 0.030 0.732 0.017 0.711 0.014 0.185

stereo 0.412 0.046 0.439 0.051 0.455 0.057 0.507 0.032 0.530 0.023 0.164
ours 0.501 0.030 0.582 0.027 0.587 0.012 0.660 0.017 0.738 0.012 0.067

TABLE II

FRAME-TO-FRAME RELATIVE POSE ERROR: THE NETWORK WITH OUR PROPOSED ENCODING SCHEME OUTPERFORMS OTHER ENCODING SCHEMES,

AND MONOCULAR POSE ESTIMATES IN TERMS OF BOTH TRANSLATION AND ROTATION ERROR

Method
Relative Pose Error in Translation [m] Relative Pose Error in Rotation [deg]
Mean Std. dev. RMSE Mean Std. dev. RMSE

Monocular 0.029 0.016 0.033 1.522 0.969 1.808

S
in

g
le

volumetric stack 0.028 0.015 0.032 1.453 0.880 1.703
focalstack-5 0.030 0.015 0.033 1.439 0.883 1.693
focalstack-9 0.030 0.016 0.034 1.452 0.912 1.716

ours 0.026 0.016 0.031 1.308 0.885 1.583

M
u

lt
i

volumetric stack 0.024 0.016 0.029 1.366 0.802 1.585
focalstack-5 0.031 0.016 0.035 1.457 0.779 1.653
focalstack-9 0.035 0.017 0.039 1.585 0.868 1.807

stereo 0.028 0.015 0.032 2.413 1.655 2.938
ours 0.023 0.017 0.029 1.282 1.311 1.534

TABLE III

TRAINING AND VALIDATION TIMES

Method Training time [hr]
Validation time [ms]

(mean over 300 inferences)
Data Loading Inference

S
in

g
le

monocular 17.6 1.9 7.9
volumetric stack 17.6 1.9 39.6

focalstack-5
25.0

1.9 51.9
focalstack-9 1.9 61.3

ours 17.9 10.8 48.1

M
u

lt
i

volumetric stack 25.4 9.1 47.1
focalstack-5

30.4
9.1 59.2

focalstack-9 9.0 69.0
stereo 3.5 3.8 12.1
ours 29.5 18.0 55.8

other approaches in terms of both translation and rotation

error. This is true for both of the warp pipelines. We further

see that due to a better estimate of scale, multi-warp exhibits

better performance than single-warp, as was expected.

D. Training and Validation times

We report training and validation times in Tab. III. Our

method does not require prohibitively large amounts of train-

ing time in comparison to the monocular approach. Networks

were trained on NVIDIA RTX 2080 and NVIDIA V100

GPUS, except for the stereo approach. This was trained on

an NVIDIA RTX 3060 GPU and hence exhibits significantly

faster training times. We also anticipate a speed up by

four times through code optimization. Inference times were

measured on an NVIDIA RTX 2080 GPU. Inference takes

longer time for our method due to time spent on encoding

the LF. However, despite our approach using 16 times more

data than the monocular approach, the inference times are

within practical limits for deployment on a robotic platform.

V. CONCLUSIONS

We have presented an approach for adapting existing tech-

niques developed for traditional cameras to novel imaging

devices. We show that by incorporating ideas from plenoptic



imaging and unsupervised learning one can successfully

estimate depth and odometry from sparse LF cameras which

outperforms the state-of-the-art monocular and stereo recon-

struction pipelines.

We anticipate follow-on work in generalising to irreg-

ularly sampled LFs, as well as to other modalities like

event-based cameras, and multi-modal sensing incorporating

inertial measurements. As the approach effectively allows

ongoing lifelong calibration, adapting to how cameras change

over time, the presented work can be extended to allow an

autonomous car to adapt to optical shifts due to thermal

warping, vibration, or fatigue, or for an underwater robot

to adapt to changes in index of refraction or housing de-

formation associated with temperature, salinity, or pressure

shifts.
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