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Abstract—Light fields (LFs) and light field videos (LFVs)
capture both angular and spatial variation of light rays ema-
nating from scenes. This richness of information leads to novel
applications such as post-capture refocusing, depth estimation
and depth-velocity filtering which are not possible with images
and videos. These capabilities come, however, with a significant
increase in data to be processed. In order to fully exploit
opportunities provided by LFs and LFVs, low-complexity signal
processing algorithms that process LF and LFV data in real-
time are required. In this paper, we survey such state-of-the-
art algorithms, in particular for depth filtering, refocusing and
denoising of LFs and depth-velcoty filtering for LFVs, and future
directions for these real-time LF an LFV processing algorithms.

Index Terms—Light fields, light field videos, multi-dimensional
filters, real-time processing, FPGA.

I. LIGHT FIELD SIGNAL PROCESSING AND APPLICATIONS

Recent advancements in light field (LF) sensing, processing,

and display, some shown in Fig. 1, are opening exciting new

possibilities for a next generation of applications. Commercial

devices like the K-Lens adapter1 are lowering the barrier to

entry into the field, and the more than two decades of research

since the first introduction of LFs [1], [2] are converging to

enable unprecedented capabilities. These developments open

new challenges and opportunities in LF signal processing. This

article is a primer aiming to introduce the reader to the the

state of the art and opportunities in this fascinating field.

The LF is a four-dimensional (4D) representation of light

that describes variation in light intensity with ray position

and direction [1], [3]. Unlike conventional two-dimensional

(2D) imagery, the LF captures three-dimensional (3D) scene

geometry and higher order effects including occlusions, specu-

larity and refraction through transparent objects. The LF is the

minimal representation that directly samples these behaviours.
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Fig. 1. Emerging LF devices with new capabilities: (left) easily fabricated
adapters [12] are increasing access to hardware, (center) spherical lenses allow
single-aperture wide-field-of-view [13] and (right) devices like the EPIModule
from EPIImaging LLC tightly integrate sensing, compute, and FPGA fabric.

LF capture has been shown to offer advantages in seeing

through scattering media, ignoring occluders, and gathering

more light in low-light scenarios [4]–[7]. The LF structure

also enables closed-form, low-latency approaches to problems

conventionally requiring complex, iterative solutions. Exam-

ples include depth estimation, visual odometry, and change

detection [8]–[11]. This capability is especially relevant in

enabling low-latency solutions that take advantage of parallel

processing architectures.

Recent work has pushed towards real-time, embedded ap-

plications of LF capture, processing, and display. Develop-

ments like Google’s light field video (LFV) capture [14]

and the highly integrated capture-and-compute EPIModule

device depicted in Fig. 1 are paving the way for practical

deployment in challenging scenarios. For example, emerging

6G wireless networks, multi-agent robotics, and unmanned

aerial systems may utilize computer vision systems based on

LF preprocessing before machine learning algorithms, such as

object recognition based on deep convolutional neural network

(CNN) (e.g., YOLOv4 [15]) are applied.

The utilization of embedded 4D filters for depth-based

image enhancement, occlusion removal, and five-dimensional

(5D) filters for depth-velocity filtering reduces overall com-

plexity of processing pipelines. By combining 6G wireless

concepts such as holographic massive multi-input-multi-output

(MIMO) with 4D/5D embedded LF signal processing, we can

achieve scene sensing with low-latency occlusion removal.

Computer vision enables wireless access points to locate users

in a crowd based on LF processing for occlusion removal in

concert with CNN-based facial recognition [16], [17].

LF display is also developing rapidly, and there are

now commercially available autostereoscopic displays like

the ones from Light Field Lab and FoVI3D2. Worn vir-

tual/mixed/augmented reality (XR) displays have been in de-

2https://www.lightfieldlab.com/ and http://www.fovi3d.com/
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Fig. 2. The two-plane parameterization of a Lambertian point source; (b) A
SAI of the ”Kinghts” LF of the Stanford dataset [21], and EPI representations,
where different depths map to lines with different gradients.

velopment for over half a decade [18], with worn 4D displays

generally seen as the ultimate goal for immersive experiences.

These developments point the way forward for applications

spanning live and cinematic mixed reality, and autonomous

perception including robotic imaging for driving, drone deliv-

ery, and manipulation. There are however unmet challenges in

handling the vast quantities of data associated with 4D LF cap-

ture, and there is a pressing need for algorithms and architec-

tures that can unlock the potential for low-power, low-latency

embedded LF processing. In the case of imaging systems,

typical LF processing pipelines include LF acquisition and

rendering followed by denoising and various depth/velocity

based filtering techniques as pre-processing, feeding in to

compression and/or machine learning back-ends for numerous

classification and detection tasks. This paper focuses on state-

of-the-art in LF front-end processing which are mostly linear

algorithms suitable for low-complexity real-time implementa-

tions and highlights some of the opportunities and challenges

associated with the next generation of applications.

II. SIGNAL MODEL AND SPECTRAL PROPERTIES OF LFS

The design of linear and shift-invariant filters for 4D LF and

5D LFV processing is based on the shape and orientation of

region of support (ROS) of the spectra of LFs and LFVs. We

employ the most widely used two-plane parameterization3 [1],

where a light ray is parameterized by its intersections with

two planes: the camera plane and the image plane, which

sample angular information and spatial information of light

rays emanating from a scene, respectively.

A. Spectrum of a Light Field Containing Lambertian Objects

We first consider an LF containing a Lambertian point

source4 having an intensity l0 (see Fig. 2(a)). Such a Lam-

bertian point source is represented as a plane of constant

value l0 in a discrete-domain LF lp(n4) (see Fig. 2(b)), where

n4 = (nx, ny, nu, nv) ∈ Z4, i.e., [22]

lp(n4) = l0 δ(mnx∆x + nu∆u −mx0)

× δ(mny∆y + nv∆v −my0), (1)

3Two other possible LF parameterizations are the two-sphere parameter-
ization [19], [20] and the sphere-plane parameterization [19]

4A Lambertian point source is an isotropic light source.

where m = D
z0

, ∆i, i = x, y, u, v, is the sampling interval

along the dimension i, (x0, y0, z0) ∈ R2 ×R+ is the position

of the source, D is the distance between the camera and

image planes and δ(·) is the one-dimensional discrete-domain

impulse function. In this case, the ROS Rp of the spectrum

Lp(ω4), where ω4 = (ωx, ωy, ωu, ωv) ∈ R4, inside the

principal Nyquist hypercube N4 (, {ω4 ∈ R4 | − π ≤ ωi <
π, i = x, y, u, v}) is given by Rp = Hxu ∩ Hyv [22], [23],

where

Hxu =

{

ω ∈ R
4

∣

∣

∣
ωx −

(

m∆x

∆u

)

ωu = 0

}

(2a)

Hyv =

{

ω ∈ R
4

∣

∣

∣
ωy −

(

m∆y

∆v

)

ωv = 0

}

. (2b)

Here, the ROS Rp is a plane through the origin of ω4 inside

N4. Importantly, the orientation of Rp depends only on the

depth z0 of the Lambertian point source. Even with the con-

straints such as the finite sizes of the camera and image planes

and non Lambertian reflections, which are not considered in

this analysis for simplicity, the spectral ROS predominantly

occupies the region defined by the ROS Rp [24], [25].

In the case of a Lambertian object occupying a volumetric

region with a depth range z0 ∈ [dmin, dmax], the spectral ROS

becomes Ro as Ro =
⋃

z0

Rp =
⋃

z0

(Hxu∩Hyv) [23], [26], [37],

which corresponds to a hyperfan inside N4 [5].

B. Spectrum of a Light Field Video Containing Lambertian

Objects Moving with Constant Velocity and Constant Depth

We now consider modeling of a Lambertian point source

moving with a constant velocity V = [Vx, Vy, Vz ]
T in an LFV.

This may be considered as a sequence of LFs, in which the

point source is located at different depths. Because of this

depth variation, the point source is represented as a hypersur-

face of constant value l0 in an LFV [27], [28]. When Vz = 0,

i.e., the point source moves at a constant depth z0, the discrete-

domain LFV lvp(n5), where n5 = (nx, ny, nu, nv, nt) ∈ Z5,

can be expressed as [27], [28]

lvp(n5) = l0 δ(mnx∆x + nu∆u + axnt∆t −mx0)

× δ(mny∆y + nv∆v + aynt∆t −my0), (3)

where m = D
z0

, ax = −DVx

z0
and ay =

−DVy

z0
, (x0, y0, z0) ∈

R2×R+ is the position of the Lambertian point source at time

nt = 0, and A = [ax, ay, 0]
T denotes the apparent velocity.

Note that the point source is represented as hyperplane of

constant value l0 in the LFV lvp(n5). In this case, the ROS Pp

of the spectrum LVp(ω5), where ω5 = (ωx, ωy, ωu, ωv, ωt) ∈
R5, inside the principal Nyquist hypercube N5 (, {ω5 ∈
R5 | − π ≤ ωi < π, i = x, y, u, v, t}) is given by Pp =
Hxu ∩Hyv ∩Huvt [27], [28], where Hxu and Hyv are given

in (2a) and (2b), and

Huvt =

{

ω5 ∈ R
5

∣

∣

∣
ωt −

(

ax∆t

∆u

)

ωu −

(

ay∆t

∆v

)

ωv = 0

}

.

The ROS Pp is a plane through the origin of ω5 inside N5

of which the orientation of depends only on the depth z0 and

the apparent velocity A of the Lambertian point source [28].
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Fig. 3. LF depth filtering with 4D spatial domain processing.

In the case of a Lambertian object moving with a constant

velocity V = [Vx, Vy, 0]
T and occupying a volumetric region

with a depth range z0 ∈ [dmin, dmax], we can deduce the

spectral ROS Po as Po =
⋃

z0

Pp =
⋃

z0

(Hxu ∩ Hyv ∩ Huvt)

which corresponds to a hyperfan inside N5 [27], [28].

III. DEPTH ENHANCING AND REFOCUSING FILTERS

Following the properties of spectral ROS LFs outlined

above, 4D linear and shift-invariant filters can be designed for

selective filtering of one or many regions of a scene based

on depth [22], [29], [30]. Such depth filtering is typically

achieved by employing 4D linear and shift-invariant filters

having hyperplanar or hyperfan passbands with appropriate

orientation in N4. Post-capture refocusing can be seen as a

special case of depth filtering where the stopband objects are

blurred than being heavily attenuated.

Fig. 3 shows two commonly used architectures for 4D depth

filtering. While the non-separable approach employs 4D filters,

based on the partially separable nature of the spectral ROS of a

Lambertian object, the separable approach employs a cascade

of 2D filters, each operating on the entire 4D data hypercube.

The 4D input lin(n4) is typically organised as an array of

2D SAIs, which is processed by the depth filter to produce

lout(n4). Depending on the application and subsequent stages

of processing, either the entire 4D output or a set of selected

SAIs of the output can be computed. Fig. 3 also shows an

example SAI of the input and output in the case of a multi-

depth focusing scenario, where the letter surfaces A and C are

in focus. A variety of multidimensional filter design techniques

can be employed to design Hxu(zx, zu) and Hyv(zy, zv) and

different design choices (such as finite-extent impulse response

(FIR) and infinite-extent impulse response (IIR)) are based on

the application and computational resources. Table I provides

a summary of some previously reported 4D depth filters.

A. Four-Dimensional FIR Filters

The depth filtering concept was first demonstrated in [29]

using an FIR filter having hyperplanar passband, where a

TABLE I
SUMMARY OF THE ARCHITECTURES OF 4D DEPTH FILTERS.

Architecture Separable Type/Passband

[29] × FIR/hyperplanar

[22] × IIR/hyperplanar

[31], [32] X FIR/hyperplanar

[33], [34] X IIR/multiple hyperplanar

[4], [5] X FIR/hyperfan

[26] X IIR/hyperfan

[35], [36] X sparse FIR/hyperfan

[37] X sparse FIR/multiple hyperfan

planar region at a constant depth of a scene has been enhanced.

In [4], [5], an FIR filter having a hyperfan passband was

proposed, which can be employed to enhance a volumetric

region of a scene. This filter provides excellent performance

in LF refocusing and denoising. FIR hyperfan filters having

sparse coefficients are proposed in [35]–[37], which provide

significant reduction in computational complexity with almost

negligible degradation in output quality and provide similar

performance in refocusing and depth filtering compared to [4],

[5]. In particular, the FIR filter designs proposed in [36] and

[37] are optimal in the minimax and least-squares senses,

respectively. In [31] and [32], low-complexity FIR filters

were implemented on Xilinx Spartan-6 FPGAs for real-time

planar refocusing of LFs. Furthermore, the sparse FIR filter

designs [36] and [37] have a good potential to be implemented

on FPGAs for real-time volumetric refocusing of LFs.

B. Four-Dimensional IIR Filters

In order to achieve extremely low computational complex-

ity5, 4D IIR filters have been employed in LF depth filtering

[22], [26], [33], [34]. The fundamental idea to employ separa-

ble multi-dimensional IIR filters to realize higher dimensional

hyperplanar passbands is described in [38], [39] for the 3D

case and was extended to 4D in [22], [30]. The coefficients

of these filters are obtained by following filter synthesis based

on the concept of multidimensional passive network resonance

[38], [39], which leads to practical-bounded-input-bounded-

output stable [40] 4D IIR filters. Typical design process begins

with selecting an appropriate 2D/4D passive prototype network

(containing inductors and capacitors with at least one resisitive

termination) having prescribed transfer function and passband

characteristics in the 4D Laplace domain, and applying 4D

(normalized) bilinear transform to obtain the corresponding

4D z-domain transfer function, which after simplifications,

yields the required coefficients and 4D input-output difference

equations. Such 4D filters can be designed to have one or many

hyperplanar or hyperfan passbands6 in N4, hence can be used

to perform depth filtering over one or many desired depths.

Typically, with such 4D IIR approaches, zero-phase filtering is

employed to alleviate the effects of non-linear phase response

of these filters. Detailed information on such low-complexity

4D IIR filters can be found in [22], [26], [33], [34], [41].

5A 4D FIR filter or order 20×20×20×20 would required 214 multipliers
whereas an equally selective 4D IIR filter of order 1×1×1×1 would require
15 multipliers per output sample

6Here, a hyperplanar passband shape leads to depth filtering and hyperfan
passband leads to volumetric filtering.
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lin(n4)

lout(n4)

Fig. 4. Semi-systolic hardware architecture SFG[Nx, Ny, 1, 1] of
Hxu(zx, zu) in 4D IIR depth filter with single passband [34].

C. Hardware Architectures

The above 4D depth filters can be mapped into digital

hardware architectures to exploit massive hardware paral-

lelism offered by FPGAs. The underlying 4D input-output

difference equations can be mapped into suitable signal flow

graphs (SFGs) to obtain hardware architectures denoted by

SFG[Jnx
, Jny

, Jnu
, Jnv

], where 1 ≤ Ji ≤ Ni denotes the

level of parallelism in each dimension ni, i ∈ {x, y, u, v},

where (Nx × Ny × Nu × Nv) denotes the LF size. Here,

Ji = 1 and Ji = Ni imply sequential and fully-parallel

(i.e., systolic) processing of samples along the dimension

ni, respectively. For example, SFG[1, 1, 1, 1] implies a fully-

sequential architecture with a centralized processing module

taking a one-dimensional input obtained by raster scanning the

4D LF, while SFG[Nx, Ny, 1, 1] implies a semi-systolic archi-

tecture with dedicated processing element for each location

(nx, ny) on the camera plane which sequentially processes

input samples along nu and nv dimensions. The level of

parallelism is a design choice to be made based on the required

real-time throughput and available hardware resources. Design

techniques such as fine-grain/look-ahead pipelining and J-

unfolding [42] can be employed to optimize the implemen-

tations in terms of critical path delay and throughput at the

cost of hardware. Implementation of IIR hyperplanar depth

filter [22] was done following a fully sequential architecture

SFG[1, 1, 1, 1] in [43]–[47] and a semi-systolic architecture

SFG[4, 4, 1, 1] in [48]. Fig. 4 shows semi-systolic hardware

architecture of 4D IIR multi-passband depth filter in [34] for

single passband case. Performance of such hardware designs

is typically benchmarked using metrics such as the critical

path delay (TCPD), maximum frequency of operation FMAX <
1/TCPD, real-time throughput FSAMP = KFMAX (where K de-

pends on the degree of parallel processing) and FPGA resource

consumption. Design challenges include optimizing the level

of pipelining and parallel processing for the best real-time

throughout while reducing the overall hardware complexity.

Hxu(zx, zu) Hyv(zy, zv) Huvt(zu, zv, zt)

lvin(n5) lvout(n5)

Fig. 5. The architecture of a 5D depth-velocity filter.

IV. DEPTH-VELOCITY FILTERING

It is evident from the spectral ROS presented in II-B

that the objects moving with different constant velocities and

different depths ideally have non-overlapping spectral ROSs,

except at the origin, inside N5. Therefore, by employing a

5D filter of which passband encompasses the spectral ROSs

of desired moving objects of interest (OOIs) and the stopband

encompasses the spectral ROSs of moving or static interfering

objects, OOIs can be enhanced while attenuating interfering

objects. Such 5D depth-velocity filters [27], [28], can be

considered as a combination of 4D depth filters (see Sec. III)

and 3D velocity filter applied to videos [38], [49]–[53].

Exploiting the partial-separability of the spectral ROS Pp of

a Lambertian point source, depth-velocity filters are designed

as a cascade of three filters as shown in Fig. 5. In this case,

the transfer function of the depth-velocity filter H(z), z =
[zx, zy, zu, zv, zt]

T ∈ C5, can be expressed as

H(z) = Hxu(zx, zu)Hyv(zy, zv)Huvt(zu, zv, zt). (4)

Here, Hxu(zx, zu) and Hyv(zy, zv) realize a depth filter

with passbands encompassing the hypervolumes
⋃

z0
Hxu and

⋃

z0
Hyv, respectively, and Huvt(zu, zv, zt) realizes a velocity

filter with passband encompassing the hypervolume
⋃

z0
Huvt.

A. 5D Depth-Velocity Filter Designs

The filters Hxu(zx, zu), Hyv(zy, zv) and Huvt(zu, zv, zt)
can be designed as FIR or IIR filters with hyperplanar or

hyperfan passbands, see Table II for a summary. Here, the

FIR depth-velocity filters proposed in [28] and [54] provide

very good performance in enhancing OOIs compared to the

IIR depth-velocity filters proposed in [55]. However, the IIR

depth-velocity filter [55], designed with first-order filters [38],

[39], has an extremely low computational complexity. Com-

pared to the FIR depth-velocity filter having hyperplanar

passbands [28], that having hyperfan passbands [54] pro-

vides better performance in enhancing OOIs with the same

computational complexity because the latter provides a better

selectivity at frequencies near the origin in N5. The depth-

velocity filter in [56] employed a combination of hyperplanar

IIR and a hyperfan FIR filters. This filter provides better

enhancement of OOIs compared to filters [28] and [55] and has

a computational complexity lower compared to [28], however,

higher compared to [55]. Recently, the depth-velocity filter

in [56] has been extended to enhance multiple OOIs moving

with different constant velocities and depths in [57].

B. Hardware Architectures for 5D Depth-Velocity Filters

An FPGA architecture for the IIR depth-velocity filter

in [55] has been presented in [58]. This implementation

employs a semi-systolic array architecture with direct-form I

realizations for Hxu(zx, zu), Hyv(zy, zv) and Huvt(zu, zv, zt).
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TABLE II
SUMMARY OF THE ARCHITECTURES OF 5D DEPTH-VELOCITY FILTERS.

Architecture Hxu(zx, zu) and Hyv(zy , zv) Huvt(zu, zv, zt)

[28] FIR hyperplanar FIR hyperplanar

[55] IIR hyperplanar IIR hyperplanar

[56] IIR hyperplanar FIR hyperfan

[54] FIR hyperfan FIR hyperfan

Thanks to the extremely low computational complexity of

the first-order IIR hyperplanar filters, this implementation on

a Xilinx Virtex-7 FPGA implies a throughput of 467 LFV

frames/s for an input LFV frames of size 9× 9× 220× 360.

Because of the better performance of FIR depth-velocity filters

compared to IIR counterparts, future work needs to consider

FPGA implementations of such FIR filters. Depth-velocity FIR

filters with sparse coefficients, such as extensions of those

proposed for LF processing [36], [37], have a great potential

to be implemented in FPGAs for real-time processing.

V. LIGHT FIELD DENOISING ALGORITHMS AND

ARCHITECTURES FOR REAL-TIME PROCESSING

Denoising of LFs is a fundamental preprocessing step

required for computer vision algorithms. LF denoising algo-

rithms can be mainly categorized into three classes: image and

video denoising methods extended for LFs; linear methods;

and non-linear methods unique to LFs. The first approach is

to denoise each SAI individually using an off-the-shelf 2D

image denoising algorithm. A summary of algorithms that can

be used for this straightforward but time-consuming approach

can be found in [59] and [60]. However, these methods do not

utilize the angular correlations between different SAIs. On the

other hand, state-of-the-art video denoising algorithms such as

V-BM3D [61] and V-BM4D [62] can be utilized by reshaping

the LF into a sequence of SAIs or EPIs [63] [64], however,

they are far from being real-time and are not suitable for LFVs.

The nonlinear denoising methods specifically developed for

LFs include majority of the recently proposed LF denoising

techniques. LFBM5D method proposed in [65] extends the

V-BM3D denoising algorithm [61] to LFs, such that angular

redundancies are utilized. An LF denoising method using two

CNNs is proposed in [66]. In [67], a tensor-based LF de-

noising method was proposed, which utilizes super-resolution

to eliminate sub-pixel misalignment between different SAIs.

In [68] a LF denoising method using anisotropic diffusion

based on partial differential equations was proposed. Recently,

a denoising method was proposed in [69] by extending the

intrinsic tensor sparsity model utilized for multispectral image

denoising. Despite excellent denoising performance, these

nonlinear methods do not process LFs in real time.

The class of linear denoising methods has the best potential

to be implemented in real-time. These methods exploit the

spectral sparsity of LFs, i.e., the hyperfan ROS of corre-

sponding to objects in an LF takes a small fraction in N4.

These techniques employ 4D hyperplanar [22] or 4D hyper-

fan [4], [70], [71] filters. In particular, the denoising method

proposed in [71] provides very good denoising performance

with real-time processing. This method employs a mixed-

domain implementation, i.e., (ωx, ωy) frequency domain and

(nu, nv) spatial domain, and further exploits spectral sparsity

with selective filtering approach [70], [71]. The semi-systolic

hardware architecture of this algorithm implemented on a

Xilinx Vertex-7 FPGA implies a throughput of 25 LF/s for

an LF of size 11× 11× 625× 434.

VI. ADAPTIVE 4D DEPTH/5D DEPTH-VELOCITY FILTERS

For LF applications in the fields of robotics and autonomous

vehicles, scene structure is constantly changing. In computer

vision tasks where an OOI needs to be tracked across a

dynamic scene, 2D imaging systems show decreased perfor-

mance due to occlusions [72]. In this situation, 4D depth and

5D depth-velocity filters can be used as a pre-processing step

for image segmentation, object detection, facial recognition,

event detection and avoidance, or visual surveillance. When

the OOI also varies in relative depth and velocity to the camera

system, constant depth and depth-velocity filters discussed in

Secs. III and IV, respectively, are not sufficient to extract an

OOI, and adaptive versions of these filters are required.

In [73], an adaptive 4D IIR depth filtering algorithm is

devised for enhancement of OOIs. This algorithm incorporates

feedback from previous LFV frames to refine the ROS for an

OOI as its relative depth changes over time. This refinement is

performed by extracting an EPI from an LF, and searching its

spectra for a reasonable candidate of Ro. The filter is re-tuned

to Ro, shifting the plane of focus onto the OOI. A massively-

parallel filter bank architecture is used to perform the search,

allowing for an efficient implementation on an FPGA [74].

A 5D IIR adaptive filter was proposed in [75] to enhance

objects moving at non-constant depths and with non-constant

velocities. This filter has been designed using the first-order

IIR filters as in [52], and the coefficients are adapted at each

frame based on the instant depth and velocity. Due to the low

computational complexity, this filter is a promising candidate

for real-time LFV processing on FPGAs.

Computer vision tasks in real-time systems require low-

latency solutions to enable adaptation in complex environ-

ments. While state-of-the-art learning-based algorithms often

provide exceptional results [76]–[78], they are not realizable in

resource-constrained systems such as field robotics. Adaptive

depth/depth-velocity filters provide a low cost, low-latency

solution to lessen the computational power required by more

complex computer vision algorithms.

VII. CONCLUSIONS

This paper presented a tutorial overview of recently pro-

posed 4D/5D linear filtering techniques suitable for real-time

processing of computationally intensive LFs, with specific

emphasis on depth and velocity based filtering and denoising.

Blending of powerful imaging and sensing capabilities of LFs

and LFVs with emerging embedded, edge and internet of

things applications has huge potential to benefit numerous

areas including robotic vision and autonomous navigation.

Low-complexity linear filtering algorithms and hardware ar-

chitectures enable real-time preprocessing front-ends in LF

imaging pipelines and provide potential integration with more

computationally intensive secondary (non-linear) processing

such as deep learning back-ends.
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