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ABSTRACT 
 

Vision-based underwater navigation and object detection 
requires robust computer vision algorithms to operate in 
turbid water. Many conventional methods aimed at 
improving visibility in low turbid water. In this paper, we 
propose a novel contrast enhancement to enhance high 
turbid underwater images using descattering and color 
correction. The proposed enhancement method removes the 
scatter and preserves colors. In addition, as a rule to 
compare the performance of different image enhancement 
algorithms, a more comprehensive image quality assessment 
index Qu is proposed. The index combines the benefits of 
SSIM index and color distance index. Experimental results 
show that the proposed approach statistically outperforms 
state-of-the-art general purpose underwater image contrast 
enhancement algorithms. The experiment also demonstrated 
that the proposed method performs well for image 
classification. 
 

Index Terms— Contrast enhancement, image quality 
assessment, underwater imaging, ocean optics 
 

1. INTRODUCTION 
 
Underwater robots have been limited by the need to 
recognize underwater minerals, fishes, etc. In the last two 
decades, sonar has been widely used to detect and recognize 
objects in oceans. However, for short-range identification, 
sonar yields low-resolution images due to the limitation of 
the low quality acoustic aperture. Consequently, vision 
sensors are typically used for detection and classification [1]. 

Different from natural images, underwater optical 
images suffer from poor visibility due to the medium, which 
causes scattering and absorption. Especially in shallow 
water, large suspended particles cause scatter in the light-
path. Color distortion occurs because different wavelengths 
are attenuated to different degrees in water. This random 
attenuation of light causes haziness because the light 

backscattered by water along the line of sight degrades 
image contrast considerably [2].  

In recent years, researchers have developed several 
methods to enhance underwater images. Schechner et al. 
exploited a polarization filter to compensate for visibility 
degradation [3], while Bazeille et al. proposed an image pre-
processing framework for enhancing images in turbid water 
[4]. Fattal designed a color lines method to estimate the 
turbidity of haze, and then used a Markov Random Fields 
model to recover clean images [5]. He et al. proposed the 
dark channel prior to estimating the depth map [6]. Nicholas 
et al. used the dark channel prior and a graph-cut method 
rather than soft matting to refine the depth map [7]. Martin 
et al. combined a stereo matching and light attenuation 
model to recover visibility under water [8]. Lee et al. 
proposed a stereo image defogging method by using an 
estimation of scattering parameters through a stereo image 
pair [9]. Tarel et al. used a median dark channel prior 
method in a turbid medium to recover a clear image [10]. 
Chiang et al. investigated the effect of variations in 
wavelength on underwater imaging using the dark channel 
prior model [11]. However, the aforementioned approaches 
cannot perform well for high-turbidity underwater images. 
In high-turbidity water, it is difficult to obtain the ambient 
light and fine depth map using the conventional methods.  

In this paper, we propose a contrast enhancement based 
on a joint normalized image and color correction. 
Furthermore, we explore a new index to measure the 
enhanced images. The organization of the remainder of this 
paper is as follows. In Section 2, we present the contrast 
enhancement method. In Section 3, we propose Qu for 
indexing. Experimental results are given in Section 4. 
Finally, we conclude the paper in Section 5. 
 

2. CONTRAST ENHANCEMENT 
 
Underwater dark channel prior-based image enhancement 
methods use a depth map to remove scatter. However, if the 
input images are highly distorted, the real depth maps are 



with obviously blurring. To this end, we propose a guidance 
image filtering method to refine the depth map. 
 
2.1. Underwater Imaging Model 
Underwater imaging models generally follow a standard 
attenuation model to accommodate wavelength attenuation 
coefficients. For underwater imaging, the observed 
irradiance is a linear combination attenuated in the route of 
sight and the scattered ambient light. Therefore, a modified 
Koschmieder model [12] is employed for underwater 
lighting conditions. 
        The modified Koschmieder model can be expressed as 
follows: 
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where Jc(x) is the real scene at water depth D(x), ( )x is the 

normalized radiance of a scene point, d(x) is the distance 
from the scene point to the camera, and  is the total beam 

attenuation coefficient which is nonlinear and dependent on 
the wavelength. 

The proposed method is based on [13]. We found that 
turbid underwater images mostly exhibit dark qualities. The 
minimum operation is suitable for reducing the halo effect 
when estimating the rough transmission. Thus, the 
underwater dark channel priors (UDCP) can be defined as: 
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where is a square window of size 5 × 5. For each pixel 
located at position (m, n) in the square patch , the values 
from the red and blue channels are compared, and the lower 
value is selected. The proposed method can prevent the halo 
effect around occlusion boundaries. Accordingly, the coarse 
estimate of transmission is obtained as follows: 

( ) 1 ( )d x d x  
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where 0.8  for most scenes. 
 
2.2. Depth Map Refinement by Guidance Image 
In Section 2.1, we discussed the rough estimation of the 
coarse depth map. However, its depth map contains mosaic 
effects and blurring, which yields less accurate results. 
Therefore, we have developed a joint filter to reduce such 
mosaic effects. The normalized image is obtained as 
follows: 
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The refinement of the joint filtered is first performed 
under the guidance image ( )c

fI x . Here, let ( )pd x , ( )qd x , 

, ( )c
f pI x  and 

, ( )c
f qI x be the intensity value at the pixel p, q of 

the depth map and the guidance image, respectively, while 

wk is the kernel window centered at pixel k. The refined 
depth map is then formulated as: 
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where the kernel weight function ( ( ))
pq

c
G fW I x is expressed as: 
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where 
k and 2

k are the mean and variance of the guidance 

image in the local window wk, and |w| is the number of 
pixels in this window. After the refined depth map is 
obtained, we can recover the real scene using the 
underwater dark channel prior descattering model. Fig.1 
shows the result of refined depth map. 

  
                       (a)                                                (b) 
Fig.1. Depth map refinement. (a) Rough depth map by UDCP [13]. 
(b) Refined depth map by our method. 
 
2.3. Color Correction 
After descattering, the colors are seriously distorted. We use 
the physical spectral characteristics based color correction 
method to address this distortion. We take the chromatic 
transfer function τ to weight the light from the surface to a 
given depth of objects as follows: 
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where the transfer function τ at wavelength λ is derived 
from the irradiance of the surface surfaceE by the irradiance of 

the object objectE . According to the spectral response of the 

RGB camera, we convert the transfer function to the RGB 
domain as follows: 
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where the weighted RGB transfer function is τRGB, and Cc(λ) 
is the underwater spectral characteristic function of the 
color band c, c∈{r,g,b}. Finally, the corrected image is 
gathered from the weighted RGB transfer function as 
follows: 

ˆ( ) ( )c c
RGB RGBJ x J x                                                        (9) 

where ( )cJ x
and ˆ ( )cJ x

are the color corrected and 

uncorrected images respectively. 
RGB is the spectral power 

distribution transfer function. It can be measured by 
spectrometer [18]. 



3. QUALITY ASSESSMENT RULE 
 
There are many methods for underwater image 
enhancement; however, there are few image quality 
assessment rules for underwater images [21]. We typically 
conducted quantitative analysis, primarily from the 
perspective of mathematical statistics and the statistical 
parameters for underwater image quality assessment. This 
analysis includes contrast to noise ratio (CNR) [14], 
structural similarity (SSIM) [15], and color distance [16]. 
Here, we introduce a new quality assessment rule for 
underwater images. First, we recall some conventional 
image quality indexes. The CNR is similar to the signal-to-
noise ratio (SNR) and robust in measuring hazy images. The 
value of the CNR [14] is between 0 (worst) and 100 (best). 

Let μA, σA, and σAB respectively as the mean of image A, 
the variance of image A, the covariance of images A and B, 
respectively. The SSIM [15] is given as follows: 
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where C1, and C2 are the small constants. SSIM is the 
structural similarity (values are between 0 (worst) and 1 
(best)). 

The metric ∆E represents the Euclidean distance 
between two colors in the Lab color space. It is calculated 
from their L, a, and b values as follows: 
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where smaller of ∆E values indicate greater similarity 
between images A and B. The inverse normalized color 
distance is defined as: 
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where Emax  is the maximum color distance value. The 
values of E are between 0 (worst) to 1 (best).  

Although SSIM performs well for measuring the 
structural similarity of images, there is no color information 
for comparison. Thus, we propose a comprehensive image 
quality index Q, which is defined as follows: 

( , ) ( , )uQ SSIM A B E A B                                     (13) 

where ,  are the parameters. Here, we set 0.5   . 

The proposed Qu can evaluate the similarity of both the 
structures and colors of images.  
 

4. EXPERIMENTS AND DISCUSSIONS 
 
The performance of the proposed algorithm was evaluated 
objectively and subjectively by utilizing ground-truth color 
patches. Both results demonstrate the superior scatter 
removal and color balancing capabilities of the proposed 
method over other methods. In our experiment, we 
compared the proposed method to recent state-of-the-art 
methods. Here, we selected the best parameters for each 

method. The computer used was equipped with Windows 
8.1 and four Intel Core i7 (2.0 GHz) CPUs with 8 GB RAM.  

  
                      (a)                                          (b) 

   
                      (c)                                          (d) 

   
                      (e)                                           (f) 

   
                     (g)                                            (h)  

  
                      (i)                                             (j) 
Fig.2. Simulation results of different methods in a water tank. (a) 
clean water image; (b) 200 mg/L turbidity water image; (c) He’s 
method; (d) Nicholas’s method; (e) Chiang’s method; (f) Fattal’s 
method; (g) Tarel’s method; (h) Gibson’s method; (i) Lee’s 
method; (j) Proposed method. 



        In the experiment, we first captured the image of a 
color chart in clean water. We then added deep-sea soil to 
the water (from 100mg/L to 500mg/L). Fig. 2 shows the 
simulation results obtained using the different methods in 
the water tank with a turbidity of 200 mg/L.  
         As seen in Fig.2, Chiang’s [11], and Fattal’s [5] 
methods cause color distortion. Some scatter remained in 
the resulting images of Nicholas’s [7] and Tarel’s [10] 
methods. He’s [6], and Lee’s [9] methods cause 
inhomogeneous scatter (right-upper corner of the resulting 
images are too dark). While the result of Gibson’s [17] 
method yields additional noise. As shown in Fig. 2(j), the 
proposed method removes scatter and recovers colors 
effectively.  
        In addition to the visual analysis mentioned above, we 
conducted quantitative analysis, primarily from the 
perspective of mathematical statistics and the statistical 
parameters of the images (Table 1). This analysis includes 
CNR, SSIM, inverse color distance E , and Qu. Table 1 
shows the numerical results of CNR, SSIM, Color Distance 
and Qu on several images. The results indicate that the 
proposed approach works well for scatter removal. 

Table 1.  Comparative Analysis of Different Enhancement 
Methods (Figure 2). 

Methods CNR SSIM E  Qu 

He et al [6] 75.6850 0.5121 0.8621 0.6871
Nicholas et al [7] 63.2756 0.5918 0.9571 0.7745
Chiang et al [11] 56.0769 0.6014 0.9865 0.7940

Fattal et al [5] 66.1249 0.5373 0.9727 0.7550
Trael et al [10] 85.8001 0.6488 0.9555 0.8022

Gibson et al [17] 45.8750 0.7077 0.9756 0.8417
Lee et al [9] 90.1283 0.6535 0.9810 0.8173

Proposed 98.0757 0.7110 0.9883 0.8497
 
        We also compared the Qu of different methods in 
different scattered turbidity water. As seen in Fig.3, the 
average value of Qu of the proposed method improved 
approximately 0.01 over the value of the best of traditional 
methods. Note that Fattal’s method cannot remove the 
heavy scattered image, because the ambient light cannot be 
calculated by color lines. 

In the second experiment, in order to certify the utility 
of the proposed method, we compared the classification 
accuracy of recently most used classification methods [18, 
19]. The result is shown in Fig.4. In this experiment, we 
used 7330 images from the database of Japan Agency for 
Marine-Earth Science and Technology [20]. Images are 
manually classified into four classes (squid, crab, shark and 
minerals). We chose 5330 images for training and 2000 
images for classification. From Fig.4 we can find that the 
proposed method can improve all of the popular 
classification algorithms. The average accuracy rate is 
improved about 1.5%. We also can conclude that the 

proposed method can be well applied in CNN-based 
classification applications. 
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Fig.3. Comparison results of underwater enhancement methods in 
different water turbidity.  
         

 
Fig.4. Comparison results of effectiveness of the proposed method 
in conventional classification methods 
 

5. CONCLUSION 
 
In this paper, we have explored and successfully 
implemented contrast enhancement techniques for images in 
high turbid water. We have proposed a joint normalized 
filter to refine the coarse depth map that outperforms 
conventional methods. Moreover, we have proposed a more 
comprehensive image quality assessment index that can 
measure the underwater image quality better than the 
traditional indexes. In future, we plan to design new deep 
learning-based algorithms for inhomogeneous scatter 
removal. 
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