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Abstract

Light field cameras are an emerging technology

with unique post-processing capabilities. For

certain light field applications such as synthetic

aperture photography, existing calibration pro-

cedures are either metric calibrations that are

difficult to execute with low-cost hardware, or

non-metric procedures that are inflexible to ar-

bitrary sub-camera pose or require cameras with

tightly controlled poses. We present a novel and

comparatively simple non-metric procedure for

light field acquisition that estimates the geomet-

ric transforms between camera images with re-

spect to a calibration plane. The procedure is

suitable for mobile camera arrays, and flexible to

unknown or varied sub-camera pose. It only re-

quires one image from each camera of a calibra-

tion pattern positioned to span the camera ar-

ray’s full field of view. We also provide a quan-

titative measure of calibration quality, and use

it to demonstrate the procedure’s efficacy with

our Raspberry Pi camera array. The results high-

light the procedure’s robustness to variable cam-

era orientation in contrast to existing state of the

art techniques. Finally, we present qualitative re-

sults by rendering light fields at varying levels of

focus and occlusion, and demonstrate success in

capturing and rendering light field video.

1 Introduction

Light fields describe the amount of light flowing through

space in all directions. A light field camera captures an array

of views of a scene using either an array of cameras [Yang et

al., 2002], a lenslet array [Ng et al., 2005], or a single camera

on a controlled gantry [Levoy and Hanrahan, 1996]. The re-

sultant views are aligned using homographies so that light

rays can be identified via a two-plane parametrisation con-

sisting of a camera plane with cameras in s, t and an image

plane with pixels in u, v .

Some applications of light fields include image-based

rendering [Levoy and Hanrahan, 1996] and 3D geometry

estimation [Wanner and Goldluecke, 2014]. Technologies

such as 3D light field displays are also emerging [Chen et

al., 2014]. A popular application of light field cameras is

synthetic aperture photography [Levoy et al., 2004], which

involves projecting images onto a focal plane and comput-

ing and rendering their average, enabling post-capture re-

focussing. With a sufficiently wide synthetic aperture, syn-

thetic focussing can blur nearby occluders until they fade

from view.

To achieve results in any such application, camera cal-

ibration is essential. Calibration processes have been de-

scribed for monocular cameras since the early 1970s, first

in photogrammetry [Brown, 1971], and later in computer

vision [Ganapathy, 1984]. Monocular camera calibration

involves estimating intrinsic and extrinsic camera param-

eters so that images can be later rectified for accurate anal-

ysis and rendering. Early light field capture was dominated

by calibrated monocular cameras that travel along con-

trolled gantries. Although this technique allows the trans-

formations between viewpoints to be trivially calculated, it

severely limits applications outside the laboratory, and re-

stricts capture to static scenes. Camera arrays and lenslet

arrays have greater potential, though finding the transfor-

mations between viewpoints becomes non-trivial, espe-

cially when orientations differ. As a result, calibrations for

camera arrays and lenslet arrays have been developed that

recover sub-camera poses.

Most camera array calibrations involve applying an ex-

tension to Zhang’s monocular calibration [2000] across all

viewpoints with additional optimisation steps [Ueshiba

and Tomita, 2003; Xu et al., 2014]. Calibrating camera ar-

rays using such processes is challenging, especially outside

the laboratory and for mobile arrays.

Vaish et al. [2004] point out that for many light field ap-

plications such as synthetic aperture photography, a met-

ric calibration that recovers camera parameters is unnec-

essary. Instead, only the relative positions of viewpoints

are needed to a scale to compute the projective transforms



necessary to render an image focussed at a given focal

plane. Vaish achieves this by measuring the parallax of

several scene points across all cameras and computing the

nearest rank-1 factorization via Singular Value Decomposi-

tion (SVD). This non-metric procedure was shown to pro-

duce better qualitative results for synthetic aperture pho-

tography applications than those produced through metric

calibrations.

Although Vaish’s procedure is conceptually simple, it as-

sumes that all camera images are aligned at a reference

plane. This allows scene point parallax in images to be

considered a function of relative camera position. Non-

uniform orientation among cameras voids this relationship

as parallax becomes a function of camera orientation in ad-

dition to position. This makes camera positions irrecov-

erable by means of parallax measurement. This is a sig-

nificant problem for low-cost consumer cameras prone to

inconsistent construction. Our Raspberry Pi camera array,

for example, was built to maintain front-facing orientations

by mounting cameras onto an aluminium plate, yet vari-

able orientation is still exhibited within their fixed camera

boards.

1.1 Contributions

We propose a novel calibration solution that recovers the

geometric transformations between images with respect to

a calibration plane. Such transformations are useful be-

cause they are a function of relative camera pose rather than

position. Our method can be achieved using only a sin-

gle image from all cameras of a calibration pattern span-

ning the camera array’s full field of view. Transformations

are estimated using feature detection and sample consen-

sus algorithms. Another advantage of our solution is that

it largely relies on prevalent algorithms that already exist as

standard tools in most computer vision libraries, so imple-

menting it requires few lines of code.

To support the use of our calibration, we also present

a quantitative measure of calibration quality. Vaish et al.
[2004] note that the usual indicators of calibration accuracy

such as reprojection error cannot be measured for non-

metric calibrations. Our measure of error is the total dis-

tance between SURF feature points in calibration images

after projecting them onto the calibration plane using their

estimated relative transformations. We have achieved a

significant improvement in SURF feature consistency from

our calibration compared to Vaish’s. This will be true for

any camera array with variable camera orientation.

2 Related Work

Dansereau et al. [2014] point out that image sets suffer-

ing from parallax can be used to construct light fields by

estimating the geometric transformations between images

and reprojecting them onto a common plane. This is essen-

tially what we have recognised and are taking advantage of

in our method. However, theirs requires an initial estimate

of camera pose to be known, parametrised by azimuths and

elevations. This is possible when the pose of cameras is

tightly controlled, such as in their Ocular Robotics RobotEye

camera system. The poses of our cameras are not tightly

controlled on their camera boards, so sub-camera poses

cannot be recovered without performing a metric calibra-

tion that estimates camera parameters.

Vaish et al. [2004] also state that a possible area of fu-

ture work is investigating extensions to their technique for

cameras in general positions, as well as arbitrary reference

planes using planar homologies. Following this suggestion,

we have identified a technique to align camera images us-

ing planar point correspondence for cameras with variable

orientation.

3 Calibration

Consider a camera array consisting of cameras with un-

known poses, and a non-repeating planar calibration pat-

tern positioned to span the array’s full field of view (see

Figure 1). The image set captured in this scenario can be

brought into focus at the calibration plane as a light field by

applying geometric transformations to the image set. Our

approach will estimate these transformations.

Figure 1: Example calibration setup with camera plane on

the left, and calibration plane on the right. Between the

planes is the projection of two adjacent camera views with

significant overlap. Our procedure requires that it be pos-

sible to position a calibration pattern that spans the array’s

full field of view with significant overlap between adjacent

views.



3.1 Choosing a Calibration Pattern

The calibration pattern must be non-repeating so that er-

roneous feature matches are minimised. This means that

common calibration patterns such as checkerboards are

unsuitable. Additionally, the pattern must be sufficiently

detailed so that feature identification is strongly encour-

aged. Li et al. [2013] have reverse engineered a pattern

generator that yields high quantities of detectable features

using random noise. The generator executes in multiple

passes at varied scales so that plentiful features can be de-

tected at a range of distances. Calibration patterns gener-

ated this way are suitable. We have also achieved good re-

sults using certain detailed paintings and posters. Though

results may vary using paintings and posters, it is a conve-

nient alternative to printing a potentially large pattern.

3.2 Transform Estimation and Image Rectification

Once a calibration image has been captured by each cam-

era, feature matching can begin. We identify features across

all views using Speeded-Up Robust Features (SURF) [Bay et

al., 2008]. This generates a point matrix and a feature de-

scriptor matrix for each image. Unique, matching points

between adjacent image pairs are then collected if the er-

ror between feature vectors is within a threshold. Not all

image pairs need to be compared; we compare only suc-

cessive and adjacent image pairs (i.e. with an image set

I , we match features in I0 ↔ I1, I1 ↔ I2, ...). The sets of

points matched between each successive image pair be-

come the main inputs into the Maximum Likelihood Esti-

mation SAmple Concensus algorithm (MLESAC) [Torr and

Zisserman, 2000], which provides an initial set of geomet-

ric transformations. MLESAC uses the same strategy as

the more common RANSAC [Fischler and Bolles, 1981], but

chooses solutions according to maximum likelihood rather

than the number of inliers, overcoming non-linear con-

straints between parameters.

The transformations returned by MLESAC will be rela-

tive to the first camera’s image, causing a progressive dis-

tortion of the later images. This can be resolved by choos-

ing an alternative image as the anchor and applying its in-

verse transform to all the others, so that the anchor image

becomes the least distorted. We measure the u, v limits of

each image after projecting them onto the calibration plane

via their estimated transforms to identify the central image

and use it as the anchor. Choosing the central image as the

anchor will reduce overall distortion.

The final set of transformations can be used to rectify any

image set captured by the array into light field alignment at

the calibration plane.

3.3 Synthetic Aperture Focussing

If relative camera positions are known, then images can be

translated into alignment at any plane parallel to the cal-

ibration plane for synthetic focussing. With a desired fo-

cal depth d relative to the calibration plane, and cameras

with relative positions in∆P , each camera image Ci should

each be translated by −d∆Pi to bring them into alignment
[Vaish et al., 2004]. Results are rendered by taking the aver-

age of all translated images.

4 Implementation and Results

Our Raspberry Pi camera array uses Raspberry Pi V1 cam-

era modules arranged in a 4x4 grid (see Figure 2). Their ori-

entations are unknown, though they are known to be non-

uniform. Our cameras are approximately planar and evenly

spaced.

Figure 2: Our Raspberry Pi Camera Array

Although we suggest using a calibration pattern gener-

ated via noise functions [Li et al., 2013], we demonstrate the

flexibility of our solution by using an image of a painting

displayed on a TV positioned 300mm in front of the cam-

era array. The painting used is Leonid Afremov’s Farewell

to Anger. Our horizontal and vertical sub-camera fields of

view are φ= (53.5°,41.41°), and distances between cameras

are each roughly 34mm. This makes our horizontal and ver-

tical u, v overlaps on the calibration plane approximately

89% and 85%.

Our qualitative results include focussed light field stills,

including animations of stills in which the level of focus

varies between planes of interest (see Figure 3). Notice that

the objects in the focal plane are clear, while the objects

elsewhere appear blurred, and occluders fade from view

when the focus is on the background. Clear focus levels are

indicative of a high quality calibration.

We have also captured light field video of indoor and out-

door scenes with panning focus and moving objects (see

Figure 4). Our synthetic focussing results and robustness

to occluders compares well with the results others have

achieved using similar procedures.



(a) Unrectified image from one of the Raspberry Pi V1 camera
modules

(b) Light field focussed on the office chair in the background

(c) Light field focussed on the occluding hand in the fore-
ground

Figure 3: Rendered light field still demonstration display-

ing an office scene at two levels of focus with an occlud-

ing hand (focus animations available online) [Stewart and

Dansereau, 2017]

(a) Video 1, background in focus

(b) Video 1, foreground in focus

(c) Video 2, background in focus

(d) Video 2, foreground in focus

Figure 4: Screenshots from some of our light field videos

(full videos available online) [Stewart and Dansereau, 2017]



To qualitatively demonstrate the effectiveness of apply-

ing relative view transformations to handle non-uniform

orientation, we compare the visual clarity of synthetic fo-

cussing results rendered with no alignment, alignment by

translation only, and alignment by transformation (see Fig-

ure 5). No alignment is akin to to applying Vaish et al.’s cal-

ibration, ignoring varied camera orientation. We compare

our results with Vaish even though their method is not well

suited to our implementation, because it is the only other

non-metric calibration that we are aware of. Alignment by

translation is a more primitive version of our technique that

applies only translations to align images at a point. The re-

sults highlight the benefits of applying the more complete

transformations recovered by our procedure.

Figure 5: Close-up of synthetic focussing results using three

rectification techniques. Notice the progressive increase in

visual clarity, the best of which was achieved by our geo-

metric transformation method.

We obtain quantitative results by measuring the pixel

distance between matching SURF features in calibration

images projected onto the calibration plane. This provides

a reliable measure of focal error. We compare the results of

the same three rectification techniques as in our qualitative

comparison (see Figure 6).

We found that running multiple passes of our procedure

yields more precise view transformations. Multiple passes

can be executed by running the procedure successive times

against the rectified calibration set. For our setup, two

passes yield a significant improvement, with diminishing

returns achieved thereafter (see Table 1).

Table 1: Feature error across our aligned calibration images

after several calibration passes.

Pass

#

Average

u-feature error

(pixels)

Average

v-feature error

(pixels)

1 5.092 5.155

2 1.178 0.884

3 1.184 0.917

4 1.160 0.925

Figure 6: Positional error of SURF features measured in an

image set for three rectification techniques. Notice the pro-

gressive decline in error, the lowest of which was achieved

by our geometric transformation method.

5 Conclusions and Future Work

As research in light field technology has progressed and ap-

plications have expanded, so too has the need for robust

calibrations. Our calibration procedure can be carried out

with camera arrays constructed with low-cost hardware. It

is also exceptionally robust; the only restriction on the cam-

era array itself is that it must be possible to position a cal-

ibration pattern that spans its full field of view, and that

sufficient features can be detected and matched between

images. Our calibration is also remarkably easy to imple-

ment, with most of the processes needed (SURF, MLESAC,

and noise generators) already built into current standard

computer vision libraries and tools such as OpenCV and

MATLAB.

Our qualitative aperture focussing results compare well

with those achieved using similar, non-metric calibrations.

Vaish et al. [2004] have also shown that non-metric cali-

brations that minimise parallax on a reference plane pro-

duce better qualitative results than metric calibrations. Our

quantitative results highlight our procedure’s robustness to

non-uniform orientation.

Finally, we also demonstrate the capture and rendering

of light field video using low-cost hardware. Currently, little

work has been done on light field technology that exploits



or identifies the unique properties of the temporal axis. Our

calibration enables even the most entry-level technology

to be used in this exciting area. Work in synthetic aper-

ture photography, for instance, shows that objects can be

tracked in light field video through dense occluders [Joshi

et al., 2007].
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