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Abstract

Time of flight (ToF) cameras have played a
major role in enabling high-level decision mak-
ing and scene representation in robotic systems.
However conventional ToF camera performance
degrades with long ranges and strongly absorp-
tive or specular objects. Combining multiple
ToF cameras in arrays has been proposed for
mitigating these limitations, measuring a struc-
ture similar to a light field. In this work we ex-
pose a previously undescribed hyperbolic view
dependency in ToF arrays and leverage it to
construct an all-in-focus filter that improves
robustness and accuracy of depth estimation.
Our pipeline correctly deals with occlusion and
saturation, and outperforms previous conven-
tional and array-based approaches. This work
has the potential to make robotic perception
more accurate and robust, thus allowing robots
to work in previously prohibitive conditions.

1 Introduction

Time of flight (ToF) and other depth-sensing cameras
have found widespread use for 3D scene perception. Ap-
plications in domestic and industrial domains arise wher-
ever grasping, localisation and mapping, and human-
robot interaction are important. Warehouse robots, au-
tonomous vehicles, drone-based search and rescue, and
autonomous underwater survey and are all able to func-
tion more safely and consistently with effective 3D per-
ception.

There are, however, limitations to all depth sens-
ing approaches. Passive stereo and multi-view cameras
struggle around textureless regions and poor illumina-
tion. Active speckle projection and ToF cameras suf-
fer at long ranges, around strongly absorptive surfaces,
and in the presence of interfering signals like sunlight,
due to low signal-to-noise ratio (SNR). Paradoxically,
they also suffer around strongly reflective specular sur-
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Figure 1: (top) ToF imaging yields noisy results around
dark and/or distant regions (blue, contrast-stretched)
and invalid estimates around specular reflection (red);
(center) Previous work [Jayasuriya et al., 2015] combines
views from an array of ToF cameras to improve signal
quality, but degrades accuracy and does not maintain
sharp edges; (bottom) The proposed hyperbolic all-in-
focus filter approach correctly combines views, preserves
edges, and removes view-dependent artefacts, yielding
more accurate and robust depth estimates to allow
robots to better operate in challenging scenarios.



faces, where strong signal returns result in saturation
and invalid depth estimates. The net effect is that even
commonly occurring situations can yield inaccurate and
incomplete depth maps in active depth sensing cameras.

Recent work has shown that combining ToF depth
measurements over time can dramatically improve per-
formance, especially in challenging conditions [Attal et
al., 2021]. Earlier work showed that combining ToF mea-
surements from multiple spatial locations can yield a
similarly significant improvement from an instantaneous
measurement [Jayasuriya et al., 2015]. By combining
multiple views in a light field-like structure to focus on
a single depth, SNR can be improved and the impact
of specularity decreased. Performing this in an instanta-
neous measurement means it can drive decisions in time-
critical robotics applications.

In this work we expose and overcome two key limita-
tions of previous work combining multiple ToF cameras
in an array. First, we show how to combine multiple
views while maintaining sharp focus over the entire range
of depths in the scene, rather than focusing on a single
depth. Second, we show prior works miss an important
view dependency in ToF field measurements, impacting
accuracy. We describe this view dependency and pro-
pose a method that exploits it to yield more accurate
and robust measurements via an all-in-focus filter.

The contributions of this work are:

1. We discover and describe a hyperbolic view depen-
dency in the distance values of ToF fields,

2. We propose the first time of flight field all-in-focus
filter, exploiting this view dependency, offering en-
hanced noise rejection and depth accuracy com-
pared to previous methods, and

3. We augment the filter to correctly handle occlusion
boundaries and reject saturation from specularities,
further improving accuracy and robustness.

The dataset and code will be available at https://
roboticimaging.org/Projects/ToFF.

To validate our approach we mount a single ToF cam-
era on a robotic arm, imaging static scenes over a grid of
camera poses to emulate a ToF camera array taking an
instantaneous measurement. Figure 1 provides a quali-
tative view of the performance improvement our pipeline
provides compared with conventional ToF capture and
the previous ToF array approach. In Section 4 we fur-
ther quantify the performance of our approach, showing
more consistent and accurate depth estimates, and we
evaluate how our method degrades with noise, showing
substantially lower error than previous approaches. Fi-
nally, we show the proposed method better maintains
edge information as well as offering more robustness to
specularity compared to previous approaches.

The instantaneous capture and enhanced depth esti-
mation offered by this work have the potential to improve
robotic depth perception in a range of commonly oc-
curring scenarios. From objects on reflective warehouse
shelves to darkly coloured or strongly specular objects
in dynamic scenes, this could allow robots to work more
quickly and safely and in a broader range of conditions.

2 Related Work

The improvement of depth measurements from ToF cam-
eras is an active research space. Recently, there has been
a focus on learning-based approaches for use in challeng-
ing scenes. For example, DeepToF [Marco et al., 2017]
uses a ToF camera with no modifications feeding into an
autoencoder to learn a basis for multipath interference
and correct it. Su et al. [Su et al., 2018] use a deep
convolutional neural network from dual frequency mea-
surements to allow for multipath removal, denoising and
phase unwrapping. Instead, our work establishes a prin-
cipled approach to gathering and combining multiple-
aperture ToF fields to offer instantaneous capture while
improving accuracy and robustness.

There are also several notable examples where aug-
menting the internal processing can allow the camera to
see more clearly in challenging conditions. This includes
coded illumination patterns for dealing with reflections
[Heide et al., 2013] or turbid media [Heide et al., 2014],
using different illumination locations or polarised light
to extract surface normals and edges [Callenberg et al.,
2017] or constructing demodulation frequencies orthog-
onal to the illumination to extract information about
the Doppler shift of points in the scene [Heide et al.,
2015]. Our proposed pipeline operates on the standard
ToF camera, but we note that the concept of a camera
array could also be combined with these forms of aug-
mentation.

Combining multiple views to address shortfalls of vi-
sion systems is well explored for conventional cameras.
Light fields use an array of cameras to capture richer
scene content. Applications include denoising [Alain and
Smolic, 2017], [Chen et al., 2018] and occlusion removal
[Vaish et al., 2006], [Wang et al., 2020]. Similarly, we
leverage the richer information present in an array of
sensors to improve ToF imaging, but also expose a key
point of departure from conventional light field process-
ing, namely the hyperbolic view dependency associated
with ToF fields.

Depth fields (DF) [Jayasuriya et al., 2015] first pro-
posed using an array of ToF cameras for improved
noise rejection. By leveraging conventional light field
techniques, they demonstrated refocusing at a single
depth, phase unwrapping and imaging through occlud-
ers. Whilst convincingly demonstrating the potential of
using multiple views provided by ToF camera arrays, we
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show how to keep the entire scene in focus, and that
the view independence assumed by conventional light
field techniques is not valid in ToF fields. We propose a
pipeline that provides an all-in-focus filter by leveraging
the hyperbolic view dependence (see Subsection 3.1-3.2).

Finally, T6RF [Attal et al., 2021] uses images from
multiple ToF measurements. Whilst similar, our work
solves a different problem with a well defined array of
cameras, with a possibility of supporting instantaneous
online sensing for robotic platforms. On the other hand,
To6RF operates on multiple exposures over time in a more
unstructured fashion.

3 Methodology

In this work we derive and exploit the appearance of a
single point as imaged by an array of ToF cameras. Our
experimental validation emulates a camera array using
a robotic arm to moves both the light and aperture of a
ToF camera. Our derivation thus describes this scenario,
and requires minor modification for alternative configu-
rations, e.g. employing a single light source in the center
of an array. The hyperbolic view dependency that we
uncover remains in both cases.

3.1 Phase-Correct Depth Measurements

A camera’s position within a planar array can be de-
scribed by its coordinates (s,t) relative to top corner of
the array, as indicated in Figure 2. Neglecting phase
wrapping effects, the phase surface of a single point im-
aged by a camera in the array at (s,t) is given by

Os,1) = kg [ P2+ (P — )2+ (P, = )2, (1)

where P = [P,, P,, P,|7 is the world coordinate of the
point being imaged and kg4 = 47 f,, /v converts distance
to phase expected for a ToF camera with modulation
frequency f,, and propagation rate v. For simplicity, we
scale our data using r(s,t) = ¢(s,t)/ke so that all values
represent distance rather than phase. The distance sur-
face described by Equation 1 is known as a hyperboloid
of two sheets, and can be rearranged into canonical form.

Points measured by the camera array also fol-
low the well known light field point-plane correspon-
dence [Dansereau et al., 2015]. Discretising the time of
flight field, we have cameras indices as (¢, j) that sample
(s,t), and pixels within each image as (k,1) that sample
(u,v). Then, a point in the scene will be seen by pixels
following the relationships
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where « is the focal length of the camera, d is the phys-
ical dimension of the array in meters, and N x N is the
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Figure 2: Schematic of a ToF camera array. Camera po-
sitions are defined by (s,t) and direction within images
as (u,v). In both cases, the top left corner is the origin.
The camera array has baseline d. We find the distance
to a point [P, Py, P,] imaged by a camera at (s,t) fol-
lows the hyperboloidal form r(s,t) = ¢(s,t)/ks shown
in Equation 1.

number of cameras in the array. Note that a given pixel’s
correspondence across the light field has only a single
free parameter, P,, while the observed value follows the
hyperboloid of two sheets described by Equation 1.

Figure 3 shows this geometry for an unoccluded point.
The figure depicts k,[ in the center view, and examples
of epipolar plane images, the consequence of mapping
single rows or columns of pixels as a function of cam-
era position in the array. As in conventional light field
imaging, the epipolar images are dominated by straight
lines. However, rather than taking a constant value as
in a light field, Equation 1 describes the dependence in
distance seen along the straight lines in the epipolar im-
ages. We believe this is the first time this structure is
described in the literature, and it captures both the light
field imaging geometry of slope varying with depth, and
the hyperboloidal dependence of observed depth on cam-
era position.

The curvature of the hyperboloid at the vertex (s,t) =
(P, Py) is

0?r(s,t)

852 (PCIHP?/) at2

0?r(s,t) _ i (3)

(PTJPH) PZ

Thus, closer objects behave less linearly in the center of
the image, however these are the objects that are the
most important for robotic applications. The previous
depth fields method [Jayasuriya et al., 2015] averages the
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Figure 3: The hyperbolic view dependency in ToF fields:
a row of pixels from a ToF image (center red) changes as
a function of horizontal camera position 4 in an epipolar
slice (top), and similarly a column of pixels (blue) evolves
as a function of vertical camera position j (right). In
light field imagery epipolar slices show lines of constant
intensity, but inspecting them in the ToF field reveals
variation. From first principles we derive this variation
as a hyperboloid of two sheets, and show it to be a good
fit to experimental measurements (bottom, green).

depths from all of the views, thus systematically overes-
timating depth (see Subsection 4.2).

3.2 All-in-Focus Depth Estimation

We leverage the observations from the above to create a
pipeline that uses all measured views to generate a sin-
gle, all-in-focus depth image, as seen from the pose of
the central camera of the array. For each pixel in the
center frame we optimise over P,, testing at each puta-
tive depth the extent to which the observed data agrees
with both the epipolar plane geometry and hyperbolic
view dependency.

For each point in the image at each putative depth P,,
we apply Equation 2 to find the corresponding samples in
all views. We then perform a best-fit of the hyperboloid
(Equation 1) to the measured distances at those samples.
We measure the goodness of fit as the root mean squared
error (RMSE) in Equation 1. We use a simplex search
method to find the P, that minimises the RMSE. By
repeating for each pixel, a full-frame all-in-focus depth
image is produced.

Examples of the resulting best fit surfaces are shown in
Figure 6. There is strong agreement between our model
and observations over a broad range of conditions. The
following sections describes how we handle outliers in the
fit caused by occlusions and saturation. In each case,
the only change is to discard affected points from the
goodness of fit calculation.

Our method also yields a goodness of fit for each pixel.
We anticipate this measure of confidence in each estimate
could be used to inform higher-level estimation and con-
trol algorithms on robotic platforms.

In this work we do not apply any form of regularisa-
tion, and expect doing so, e.g. through optimisation of
total variation, could result in further improvement to
the depth maps. Here we show results that treat each
pixel independently to best understand the characteris-
tics of the approach.

3.3 Handling Occlusion

Occlusion is a complex behaviour that breaks the as-
sumptions of the previous derivation. The left column
of Figure 4 illustrates the behaviour of the pipeline if
occlusions were not taken into account. Around edges,
the depth appears blurry, as shown in the top row. By
inspecting a surface near an edge, we observe that the
set of points do not fit a single surface. Attempting to
minimise the error over all points leads to a final esti-
mate that is closer than the true depth. The edge is
not always an instantaneous discontinuity, since a sin-
gle pixel can measure a mixture of rays from different
depths. The RMSE of the final surface fit indicates that
this behaviour occurs at all edges and is most signifi-
cant near the edge, where a correct depth fit is the most
critical.

To remedy this, we use the fact that the occluder is
always in front of the target world point. A computa-
tionally efficient way of filtering this is to apply a thresh-
old i.e. if a point is some distance dyc. closer than point
would be in the surface fit, it is classified as an occluder
and not used. This parameter should be as close to zero
as possible without clipping noisy data points. For our
datasets, docc = 7 cm is typical.

The result of using thresholding to handle occluders is
shown in the right column of Figure 4. The final depth
image produced has much clearer edges. Inspecting the
surface fit near an edge shows that the occluding points
(blue) is correctly classified and removed, such that the
fit still uses the unoccluded points and is able to produce
a better depth estimate. The proportion of views used
clearly shows that around edges we reject the occluding
views, using fewer images but yielding more accurate
and sharper results. We also test and demonstrate this
approach on more difficult scenarios such as double oc-



cluders, holes and thin wires, some results are shown
in Figure 6.
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Figure 4: Occlusion-aware filtering maintains edge de-
tail. (a) a point on an edge indicated by the black ‘x” ap-
pears as (b) a discontinuity in (4, j) in the fitting process.
The occlusion-aware fit (right) discards outliers (blue)
yielding a better fit (gray) at the occlusion boundary.
(c¢) The resulting estimate ignores some views, meaning
a smaller proportion of total views get used, but (d) this
results in sharper edge boundaries and lower error in the
final depth map.

The consequence of occlusion-aware filtering is a more
consistent accuracy across the image, including near
edges. We do note some larger errors occur at the edge,
rather than near it. This arises since the pixels at edges
contain two different depths within the solid angle sub-
tended at the sensor. A methods for handling this sub-
pixel effect is left as future work.

3.4 Dealing with Specularity

As shown in Figure 1, specularity can cause the depth
processing pipeline to fail by saturating the sensor. Sim-
ilarly, there are cases where some pixels become unre-
sponsive (i.e. dead pixels). Each of these are pixel-level

phenomena that vary across views in the ToF array.
Where a particular pixel is saturated or unresponsive,
other views may provide valid measurements.

We propose to extend our occlusion-handling ap-
proach to deal with saturated or dead pixels. When
computing the error in the fitting process, we detect and
reject pixels that are unphysical — too close as set by a
threshold. If the center view is still valid, this approach
closely resembles the occlusion removal approach. In the
case where the pixel from the center view is invalid, we
compute a coarse plane sweep over a candidate P, range,
initialise from the depth that gives the minimum fit error
after removing invalid depths from the relevant views.

4 Results

To validate the ToF field approach we mount a Chronop-
tics Kea ToF camera on a URSe robotic arm, emulating
an array of ToF cameras. For all experiments we sam-
ple 15 x 15 views in (s,t) with a baseline of d = 0.3 m.
The camera illuminates and demodulates the signal with
fm = 50 MHz.

To provide an additional point of comparison, we also
repeatedly image the scene from a stationary center
view, capturing 152 images. This allows us to aver-
age multiple exposures in a stationary burst imaging ap-
proach, representing an upper bound in noise rejection
but requiring a static scene and camera.

4.1 Qualitative Evaluation

We present a qualitative comparison between our
proposed method and other candidates in Figure 1.
DF [Jayasuriya et al., 2015] is the previous state of the
art method for processing time of flight fields. In the sin-
gle image case (top), there is low SNR and regions of no
information caused by saturation from highly reflective
surfaces. The previous approach improves SNR but blurs
edges outside of the focus depth. As we demonstrate,
previous work also systematically overestimates the true
depth since it assumes view independence. Our pro-
posed method leverages the hyperbolic view dependency
in the structure of the data. We filter view-dependent ef-
fects such as saturation from specularity producing high
quality, low noise depth maps of complex scenes. Con-
sequently, the output from our approach shows higher
SNR, sharper edges, and more resilience to specularity
than single-view or the previous filtering appraoch.

We also show a detailed comparison in Figure 5, imag-
ing a mannequin head. A single ToF capture is noisy
and obscures some features of the face such as the lips. A
possible solution is averaging through a stationary burst,
but this requires a static scenario that is not always real-
istic in mobile robotics applications. By capturing multi-
ple views simultaneously, both the previous DF and pro-
posed methods seek to improve SNR for instantaneous
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Figure 5: Qualitative performance comparison: (left to
right) A mannequin head imaged with a single ToF cam-
era shows significant noise; Combining a burst of frames
in a static scene reduces noise but is not an instantaneous
measurement; Previous depth fields approach improves
SNR but loses information off the focal plane, apparent
here as a loss of geometry around the neck and ears;
The proposed approach improves SNR while maintain-
ing sharp edges and features of the face.

capture. The DF approach is only sharply focused at a
single depth, resulting in loss of edge information and
detail at other depths. Our method maintains focus at
all depths, improving SNR by combining multiple single
images. The improvement is not as strong as that of the
burst method, as evident in the spurious pixels around
the face boundary. The increased depth around the left
ear arises due to the large angle of incidence and is com-
mon between all methods. In particular, for DF the ear
is out of focus and hence overestimated beyond the con-
trast stretch. A limitation that is also common is multi-
path interference, most noticeable near the bridge of the
nose. This could be improved by combining our pipeline
with previous approaches to handling multipath.

We also demonstrate the internal surface fits of our
pipeline in a range of cases, shown in Figure 6. The data
on unoccluded points strongly agrees with the model de-
veloped in Subsection 3.1, as seen in the top row. The
distance spanned by the surface depends inversely on
the depth of the point as in Equation 3, with Surface 1
spanning the largest range and Surface 3 spanning the
least. We also demonstrate that our occlusion detection
is valid, even when there are multiple occluders such that
the proportion of points used is less that 0.5. The wire
does get lost as it gets further away, since the thickness
of the wire at that point is sub-pixel. As future work our
pipeline could be augmented to handle sub-pixel effects
to remedy this.
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Figure 6: Illustration of surface fits in a variety of cases.
Points which are closer (1) have a larger range of dis-
tances than points which are further (3), in acccordance
with Equation 3. Our pipeline fits the best surface while
rejecting occluding views (blue). Our approach works
around double occluders (4), thin occluders (5) and holes

(6).

4.2 Quantitative Evaluation

We quantitatively compare methods by measuring the
error in depth to a known planar surface. We crop the
resulting depth image and evaluate depth RMSE from
a planar fit to a gold-standard measurement taken as a
long-exposure version of the stationary burst capture.
Figure 7 illustrates the errors of the final depth esti-
mate by each pipeline. Table 1 additionally lists the per-
formance of the methods in terms of completeness. For
stationary burst and single capture, the RMSE provided
in parentheses removes dead pixels to not confound re-
sults. For the DF method we focused at the plane depth,
providing the best case result for this method. The sin-
gle image has low SNR, whilst the stationary burst is
the highest quality but requires multiple exposures for
a static scene. Since the previous work assumes view-
independence, it systematically overestimates distance.
This difference can be critical in many robotics tasks
such as object tracking or grasping. Our method shows
lower noise than a single capture and has no systematic
bias as in the DF method. We observe a slightly de-
graded accuracy of our method compared to the burst
whilst maintaining the capture time of a single ToF im-
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Figure 7: Performance comparison for a planar white
screen at a distance of 1 m, showing per-pixel error in
depth and RMSE in parentheses. Our method improves
SNR almost as much as a burst without requiring a static
scene. The previous work DF fails to account for view
dependency so produces estimates that, even when in
focus, systematically overestimate the distance. The nu-
merical results are shown as accuracy in Table 1.

age. The completeness measure counts the number of
pixels that are not physical (< 60 cm when the closest
object in the centre frame is 70 ¢cm). This is a view-
dependent phenomenon and thus both the single and
stationary burst have degraded performance. The depth
fields has no such pixels, however this method still uses
the invalid pixels in the average, underestimating the
true depth. Our method deals with the dead pixels as
occlusions, reducing the number of invalid pixels by an
order of magnitude. Failure cases occur when the satura-
tion causes invalid depth estimates greater than the sat-
uration identification threshold, which can be improved
if the minimum distance to the scene is known.

Table 1: Quantitative evaluation: accuracy mea-
sured as RMSE from a planar surface (dataset:
side_wall low_light) and completeness of the mea-
surement (dataset: fruit, as in Figure 1) as the number
of invalid points (r < 60 cm). Our method provides more
complete and accurate measurements while maintaining
instantaneous capture.

Metric Single Burst® DF>°¢ OursP
RMSE [em]  0.80 0.18 0.63 0.26
Invalid Pts 660 681 0 82

2 Capture time: 180.0 ms, P Capture time: 0.8 ms
¢ Depth fields [Jayasuriya et al., 2015]
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Figure 8: Performance of the model as synthetic noise
is added to images of a planar sheet. This is the best
scenario for the DF method since the whole scene is in fo-
cus. Our method correctly accounts for the view depen-
dence, improving SNR, and outperforming single capture
and DF at typical noise levels. The depth fields pipeline
yields biased results, limiting performance at low noise
levels.

Finally, we investigate how robust the instantaneous
capture methods are to noise. Figure 8 shows the RMSE
over the same planar surface after adding synthetic noise
with standard deviation . As seen in the figure, the
proposed approach is much more resilient to noise than
single-image capture, and the DF approach shows poor
performance at low noise levels due to the systematic
error associated with view dependence. At high noise
levels our method chiefly degrades due to the occlusion
handing algorithm interpreting points as outliers. This
reflects that the occlusion model should be adjusted to
match the noise characteristics of the use case.

5 Conclusions

We have presented an all-in-focus filter for arrays of
ToF cameras that exploits the previously undescribed
hyperbolic view dependency present in ToF fields. Our
pipeline combines information from across views to im-
prove SNR and rejects view-dependent degradations
such as specularity while maintaining sharp edges across
all depths in the scene. By correctly accounting for the
hyperbolic view dependency, we improved the accuracy
of depth measurements compared with single image cap-
ture or previous works combining ToF views.

As future work we believe incorporating ToF fields
with augmented internal processing e.g. [Heide et al.,
2013], [Callenberg et al., 2017] would better deal with
complex scenes including multipath rejection and imag-
ing through translucent media. Furthermore, minor
adjustments such as including the offset between light
source and camera, explicitly dealing with dead pixels
and including phase unwrapping could improve perfor-



mance in some applications. Finally, we believe infor-
mation in the amplitude channel can be leveraged to
improve occlusion detection and handling.
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