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Abstract

Vision is an effective sensor for robotics from which we can derive rich in-
formation about the environment: the geometry and semantics of the scene,
as well as the age, identity, and activity of humans within that scene. This
raises important questions about the reach, lifespan, and misuse of this in-
formation. This paper is a call to action to consider privacy in robotic vision.
We propose a specific form of inherent privacy preservation in which no im-
ages are captured or could be reconstructed by an attacker, even with full
remote access. We present a set of principles by which such systems could
be designed, employing data-destroying operations and obfuscation in the
optical and analogue domains. These cameras never see a full scene. Our
localisation case study demonstrates in simulation four implementations that
all fulfil this task. The design space of such systems is vast despite the con-
straints of optical-analogue processing. We hope to inspire future works that
expand the range of applications open to sighted robotic systems.

Keywords: privacy-preserving vision, optical computing, robotic imaging,
localisation

1. Introduction

Do you have a robot vacuum cleaner? Perhaps one of the new generation
robots that uses a camera to navigate around your house? Where do those
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camera images go? Who can see them? Perhaps the images should never
leave your house. Perhaps they should never leave the robot or the camera
chip. Perhaps, to best protect your privacy, the images, as we know them,
should never be formed in the first place.

Research in robotic vision has neglected and often ignored the legitimate
privacy concerns of potential end-users, and instead focused solely on im-
proving task performance [1]. In one high-profile example [2] private images
from a robot vacuum cleaner found their way to social media via a data la-
beling provider. We argue that this current disregard of privacy ultimately
forestalls the widespread adoption and societal impact of robotic vision. In
contrast, we propose to re-imagine robotic vision to achieve an optimal bal-
ance between task performance and privacy protection.

This paper is a call to action for the robotic vision community to develop
novel computational imaging technology for inherently privacy-preserving
robotic vision. By developing novel combinations of optical, analogue, and
algorithmic elements, the community – academia and industry – could build
novel camera technology that never forms human-interpretable conventional
images, and from which such images could never be reconstructed from the
sensor data.

Such new camera designs would address the legitimate privacy concerns
that are impeding the beneficial adoption of robotics in applications of so-
cietal and economic importance, e.g. where there is a strong emphasis on
social human-robot interactions (healthcare, aged care); where robots and
humans collaborate and intellectual property must be protected (manufac-
turing); or where a breach of privacy could have safety and security impli-
cations (energy) or impede sovereign capabilities (defence). By addressing
these legitimate privacy concerns, novel privacy-preserving camera technol-
ogy will broaden the applicability, and increase the public acceptance, of
robotic vision applied to these domains without compromising the privacy
and security of citizens, industries and governments.

In this paper we introduce privacy as a concept in the context of robotic
vision (§1.1) and discuss current approaches to privacy preserving robotic
vision (§2). We then introduce our proposed concept for inherently privacy-
preserving vision systems (§3) and present a localisation case study that
exemplifies this approach with four different implementations (§4). We close
with a discussion (§5) outlining our call to action for a concerted effort by
the community to generalise these concepts beyond localisation and consider
inherently privacy-preserving vision as a challenging yet extremely valuable
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Figure 1: Example of the proposed inherently privacy-preserving approach to vision: Cur-
rent robotic vision (top) uses conventional optics and cameras to form human-interpretable
images with many 100,000s of pixels. Local features are often extracted through a series
of learned convolutions and aggregations, e.g. by convolutional neural networks, before
being processed by task-specific components, e.g. for object detection or grasp synthesis.
Instead, we propose to shift processing into the optical-analogue domain (bottom): in
this example a micromirror device implements a series of learned filters through which
the light in a scene enters a single-pixel sensor. Analogue processing performs privacy-
preserving summarisation and hashing before the data enters the digital domain, where
it is vulnerable to attacks and security breaches. Specialised task-specific algorithms and
learned components operate on the secure hashes in the digital domain to perform im-
portant robotics tasks. Private data can never be directly captured by the system, and
the digital data is obfuscated by the architecture such that reverting the optical-analogue
hashing is intractable. We show that such a system is capable of localisation, and believe
this could be generalised to other tasks.

ambition.
The project page https://roboticimaging.org/Projects/Privacy/ has

code and datasets. As part of the call to action, we also encourage the vision
community to attack the privacy preserving system we propose and attempt
to solve our reconstruction challenge, see website for details.

1.1. What is Privacy?

Privacy is a complex concept that is relevant to many areas of society.
Interestingly, it was the increased availability of easy-to-use photography
cameras that motivated the definition of privacy as “the right to be let alone”
in an 1890 law review article [3].

Since then, numerous definitions and analyses of privacy have been pub-
lished, with Altman’s “selective control of access to the self or to one’s
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group” [4] one of the most prominent. As reviewed in [5], the current re-
search literature distinguishes physical, psychological, social, and informa-
tional privacy. These respectively relate to concepts such as personal space
or physical access; the right to control with whom and under what circum-
stances to share one’s thoughts; the ability to control anonymity and social
interactions; and when, how and to what extent information about the self
will be released to another person or organisation [5].

Although all forms of privacy can potentially be violated by robots and are
therefore relevant to the study of robotics, our project focuses on a specific
form of informational privacy. Concretely, in this paper, we understand
privacy preservation to be the minimisation of the risk of exposing a human-
interpretable image of the environment in which a robotic vision system
operates, or the risk of exposing information that enables the reconstruction
of such an image.

The robotics community largely considers privacy concerns and task per-
formance to be orthogonal issues: of 89,120 papers published in the top
robotics journals and conferences 1982-2019, only 0.5% mention privacy [1],
despite the fact that at least 132 countries now have data privacy laws, and
data protection officials from over 60 countries have expressed concerns about
the impacts of robotics and AI on privacy [1]. The disconnect between the
robotics research community and these recent developments is a clear call to
action, and our motivation.

Beyond the robotics community, other fields are similarly grappling with
this challenge and broadly agree it requires attention. A recent survey of
internet of things literature [6] found “there is a lack of efficient privacy
and security algorithms for IoT”, as well as a recent outlook in machine
learning finding [7] “[works] on the preservation of privacy... are still in
an infancy stage”. Our contributions demonstrate that ambitious architec-
tures can enable inherent privacy, and that our approach of never capturing
privacy-revealing data should serve as best practice.

2. Current Approaches to Privacy in Vision

Much of the current work for privacy preserving vision seeks greater lev-
els of obfuscation or even encryption. These works fall broadly under two
categories, depending on when the obscuration occurs: after capturing digi-
tal images, or during the image formation process. Here by obfuscation we
mean representing signals in a difficult-to-interpret form, and by encryption
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we entail encoding with a cryptographic key such that information can only
be compromised if someone knows or deduces the key.

In this section, we discuss encouraging results spanning these approaches,
and identify key gaps that represent the opportunity at the heart of this
paper.

Even among those tackling the specific task of privacy-preserving vision,
there are multiple definitions of privacy in use. For example, Zhang et al. [8]
propose the use of red green blue-depth (RGB-D) cameras for masking fore-
ground objects and using only depth information to maintain user privacy.
Many would also argue that capturing of depth-only imagery is an unac-
ceptable breach of privacy. In our work, privacy-preserving means that at no
point in the system are digital images stored, nor could they be reconstructed.

The fundamental law of information recovery [9] states that “overly ac-
curate answers to too many questions will destroy privacy in a spectacular
way”. We use this as a guiding principle in understanding current approaches
to privacy preservation, employing the most conservative position that any-
thing that is digitised should be suspect as open to unwelcome observers.
While vision systems may summarise images with sparse representations,
e.g. through feature extraction, Pittaluga et al. [10] show that even sparse
information like 3-dimensional (3D) point clouds of scale invariant feature
transform (SIFT) features can be used to reconstruct colour images of the
complete scene. This reconstruction succeeds even after removing keypoint
orientation and scale.

Reconstruction from features is a strong cautionary result. Even if fea-
ture extraction is implemented before digitisation it is not guaranteed to
be privacy preserving, but rather the features themselves must be robust
against reconstruction and various attacks. Thus, key characteristics used to
judge the privacy-preserving capabilities of systems are the amount of infor-
mation captured as well as by what means information is either discarded,
obfuscated, or encrypted.

2.1. Post-Capture Obfuscation and Encryption

Methods in this category capture digital images then extract and obscure
key information before discarding the images. Any system that captures dig-
ital images is open to attack via unsecured remote access to the compute
system. Of even greater concern is that in some cases the obscured form
of the images that are generally taken to be privacy-preserving nonetheless
provide enough information to reconstruct imagery of the scene. A concrete
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example of the later arises in the random feature lines proposed by Speciale et
al. [11, 12]. This work summarises scenes in terms of obfuscated keypoints,
replacing SIFT features with randomly oriented lines in three dimensions.
This obfuscates the contents of the feature cloud, rendering scenes unrecog-
nisable to the human eye. However, Chelani et al. [13] later found that images
can be reconstructed from these obscured feature clouds by exploiting statis-
tics of nearby feature points. This cautionary example indicates that there is
a wealth of structure and redundancy in even obscured representations, and
points to the need for a more significant re-think of how we carry out vision
to preserve privacy.

Conventional encryption [14], whilst relatively inexpensive and broadly
applicable, is also subject to breaches. Encrypted data may be open to unau-
thorised access, and data breaches due to human error are uncomfortably
common and increasing in frequency [15]. Ultimately, encrypted data stored
in the cloud [16] is only as secure as the agents entrusted with the decryp-
tion keys. This opens the potential for spoofing attacks, requires securely
distributing keys, or requires algorithms that work on encrypted imagery
without requiring decryption, all of which are challenging.

2.2. Optical Obfuscation and Encryption

There are several notable examples where the camera is involved in the
process of obfuscating or encrypting imagery. Key-Nets [17] use custom op-
tical fibre bundles and custom imaging sensors with per-pixel bias and gain
to effectively carry out a Hill Cipher [18]. The paper proposes a way of con-
verting neural architectures to operate on the encoded imagery, offering the
potential for existing vision pipelines to be used on keyed data. However, this
approach requires custom optical fibre bundles to shuffle pixels and custom
silicon implementing per-pixel bias and gain. Manufacture is thus extremely
impractical, preventing widespread adoption of this approach. It is also the
case that this approach, like other forms of cryptography, is only as secure
as storage of a private key, and is open to a variety of attacks.

There is growing interest in the use of optical neural networks including
diffractive deep neural networks [19, 20]. Recent work shows that diffrac-
tive layers can be designed such that destructive intereference occurs for all
except a target class. The camera captures data with low latency as all
computation is optical, and manufacture of printed masks is practical and
broadly accessible. A key limitation is that the proposed diffractive cameras
require narrowband, collimated active illumination to function, limiting their
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widespread deployment. Hard guarantees about leaking of private informa-
tion through the diffractive imaging process are also unclear.

In addition, Horton et al. [21] demonstrate task-specific operations di-
rectly on bytes generated by a very simple privacy preserving camera that
only uses a fraction of the pixels. It is unclear if such a method is robust
to reconstruction attempts, which could succeed since the proposed pixel
subset is fixed and could be solved for by an attacker. We complement this
by providing details of how to process the incoming image in an inherently
privacy-preserving and obfuscating way.

Finally, there is growing interest in reconstruction-free vision systems,
in which encoded imagery is captured but never converted to a human-
interpretable form. An example of this is the use of a lensless imaging for
action recognition [22]. Whilst capturing obfuscated imagery, this work does
not explicitly address the potential for an attacker to reconstruct human-
interpretable imagery. Based on recent progress in lensless imaging that
explicitly reconstructs human-interpretable imagery [23], it seems inevitable
that some form of reconstruction should be possible in these cameras. An-
other example of these systems is image classification from single-pixel cam-
eras [24]. Such systems are likely vulnerable to reconstruction as evidenced
by techniques in compressive sensing.

2.3. Key Gaps

It is evident that prior works either digitise signals and then make them
private, and are open to digital attack; or involve the camera and do not
prevent reconstruction. A single exception, Key-nets, is impractical due to
the requirement for custom optical and silicon manufacture.

In the following we propose an approach to inherently privacy-preserving
vision that involves imaging the scene through optical-analogue computation
such that only secure, privacy-preserving information is ever transferred into
the digital domain. Relative to prior work, key differences are in the nature
and quantity of digital information, and that reconstruction should not be
possible. We leave applying inversion attacks on the methods presented as
future work, however the results of the case study compel us by illustrating
how sparse the data is and how ill-posed the inversion problem is.

Recent work [25] asserts that any localisation algorithm that produces
poses can be attacked through queries of database images sourced from e.g.
the internet. Even if our framework was modified to produce poses instead of
matches along a previously traversed route, we believe our method is resilient
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to these attacks due to the use of global features. To invert a global feature
extractor, an attacker would have to combine multiple objects, from which
the number of possible combinations grows intractably large. This family of
attacks could also be mitigated by taking data that is not reliably found in
large quantities easily, for example by capturing non-anthropomorphic data.
This warrants further work.

Our approach is extensible so that depending on application, other defi-
nitions of privacy can be engineered into the camera. For example, in some
cases making an inference of the existence of an object in the scene could
be a violation of privacy. This could be approached in an adverserial setup,
where the feature extractor aims to confuse a binary classifier. Thus, we
believe this represents a unique approach to privacy preservation, opening
new application areas where systems with vision cannot operate at present.

By judiciously moving computation out of the digital domain, removing
and summarising information, and obfuscating or encrypting the information
that remains in the optical-analogue domain, our proposed approach offers
a different class of privacy-preserving camera that we call inherently private
vision systems.

3. Inherently Privacy-Preserving Vision

In this work we propose the concept of an inherently privacy-preserving
vision system. This is one in which none of the attacks outlined in the
previous section could be applied: brute-force decryption, image decoding,
spoofing attacks, data breaches, and access to digital imagery through unau-
thorised remote access to a robot’s hardware should not be possible. Privacy
in this sense means that at no point in the system are digital images stored,
nor could they be reconstructed.

Inspired by work on custom optics and sensors [17] as well as optical
neural networks [20], we propose that inherently private vision is possible
by constructing custom cameras designed to carry out specific tasks chiefly
through their optics and analogue electronics. These cameras must be de-
signed following a set of principles that prevent the digitisation of private
information.

We propose here a starting point for this set of ideals for constructing
inherently privacy-preserving vision systems:

• Specialise the camera to the task; this sacrifices generality for privacy
as the camera can only be used for the task(s) it’s designed for,
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• Shift as much processing as possible out of the digital domain, keeping
it out of reach of remote attack,

• Maximise information-destroying operations prior to digitisation,

• Apply obscuration prior to digitisation such that brute-force attack
becomes the only option for inverting the imaging process,

• Consider all information already available to the attacker, e.g. sequences
of data and priors to improve domain performance and ensure privacy,
and

• Maximise ambiguity, so that even a successful brute-force inversion of
the imaging process is not likely to yield the correct image.

Such sensors could fit into existing systems relatively easily. The software
reading from the sensor could still be updated, however the secure, optical
/ analogue processing must remain offline and therefore beyond the reach
of software updates and attacks. Our approach thus produces cameras that
trade flexibility for privacy.

We anticipate a broad variety of implementations could meet the above
principles, and in this paper we conduct a case study for carrying out localisa-
tion with only four of such methods. Comparison of conventional imaging and
our specific implementation employing optical-analogue single-pixel hashing
are depicted in Figure 1, and a detailed proof-of-concept study carried out
in simulation is included in the following section. In this implementation
we address the principles laid out above by specialising a camera to the
task of localisation, shifting much of the machinery of localisation into the
optics and analogue electronics of the camera, and employing information-
destroying feature extraction, summarisation, and hashing prior to digiti-
sation such than many images yield identical hashes that are nevertheless
useful for localisation.

4. Case Study: Privacy-Preserving Localisation

Here we apply the principles laid out in the previous section for designing
inherently privacy-preserving vision systems for the robotic task of localisa-
tion. We show in simulation that by shifting digital processing into optics
and analogue electronics, we can accomplish effective localisation without
ever capturing digital images and without capturing enough information to
allow reconstruction of these images.
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The overall approach of this study is to build on the architecture of a
single-pixel camera to carry out feature extraction and summarisation in the
optical-analogue domain. In this architecture a series of masks are applied
to a wide-field single pixel, and the resulting signal passed through bespoke
analogue computation. Applying insights from existing feature-based meth-
ods, we select masks and subsequent summarisation that represents a sort
of hashing or fingerprinting, such that information is destroyed before digi-
tisation. We evaluate the proposed approach by solving an image retrieval
problem analogous to localisation, demonstrating accuracy on par with a
standard SIFT-based approach.

4.1. Why Localisation?

A robotic vacuum cleaner working in medical settings, a warehouse cart
handling sensitive intellectual property in manufacturing and a drone deliv-
ering goods over government buildings all rely on an understating of position
within the scene. With current vision systems, however, any data collected
would be at risk to attack. By addressing the problem of privacy-preserving
localisation, we address privacy issues for a breadth of application domains.
We anticipate that solving the localisation problem can also give direct in-
sight into more complex vision tasks such as object tracking or grasping.

Localisation tasks range from image retrieval [26, 27], place recogni-
tion [28], or full 6 degree of freedom pose regression [29, 30]. Here we address
the image retrieval problem for privacy preserving localisation.

4.2. Optical-Analogue Image Hashing

In this section we develop some concrete implementations of inherently
privacy preserving architectures. We will present four methods of processing
the images in the optical domain and one method of processing the signals
in the analogue domain, indicating that there is still a large space of designs
possible within the framework outlined in Figure 1.

We first identify and design methods of image retrieval such that the sig-
nal processing in the optical-analogue domain computes image hashes with
high utility but limited private information. The hash function must be
tractable in hardware, information-destroying, and descriptive enough to al-
low localisation. We note intuitively that local hashes may be more open
to exploitation for reconstruction as they reveal local structure, where an
attacker needs to solve multiple smaller inverse problems. This intuition is
supported by recent work [25]. Global hashes, on the other hand, couple
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(a) (b)

Figure 2: Optical-analogue summarisation for localisation: (a) an input scene is sampled
along four randomly generated lines, recording only the global maxima (green) and minima
(magenta) along each line, (b) traces along each line with extrema highlighted. The
hashing process accumulates these extrema prior to digitisation, destroying and obscuring
information about the scene.

information between different structures, introducing more ambiguity. Thus,
we restrict our pipeline to using global features.

Edges play an important role in image understanding, and in the context
of our single-pixel architecture a simple way of looking for edges is to admit
light along lines. This motivates our first proposed implementation.

Random Lines. We measure extrema along the masked lines by using max-
imum and minimum hold circuits. We accumulate the resulting pairs of
maxima and minima, one per line, over N lines. For randomly selected and
ordered lines, the resulting accumulation of pairs of extrema reveals little
about the structure of the image, while representing a fingerprint that can
be used to discern the image from a sequence.

We illustrate the process of measuring this hash for N = 4 features in
Figure 2, where each feature is the tuple of maximum and minimum along
the curve. To look for more edges we measure along more lines, and by
randomising the locations of these lines we destroy information about the
original structure of the scene while collecting a fingerprint of its content.
Note that, by drawing from uniform distributions, the resulting collection of
features is rotation-invariant for large N .

We depict a hardware implementation of the line hash in Figure 3. To
maintain privacy the DMD is driven through a fixed set patterns that cannot
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Figure 3: Hardware implementation for processing in the optical (green) and analogue
(blue) domains. We compare two methods for the optical domain. A DMD controlled
by an offline pseudo-random number generator (PRNG) (a) applies a set of fixed filters
to light from the scene, or a controlled mirror (b) places parts of the image over a single
pixel sensor using chaotic dynamics from Chua’s circuit and/or thermal noise. The signal
from the sensor traverses analogue computation (c) that detects extrema over the series of
filters. This is repeated over N features, accumulating a histogram or hash-like fingerprint
of the scene that is then digitised and loaded to perform localisation. See Figure 4 for
example hashes.

be changed. This limits flexibility of the camera, but is critical to prevent
outside attack.

Random Circles. For the next presented method, we alter the masks em-
ployed by the DMD. One concern with the random lines is that they begin
and end at the boundaries of the images, and under motion this could allow
an attacker to infer details of the image boundaries. This motivates an alter-
native hash which computes extrema over circles rather than lines. Selecting
random radii and positions yields similar properties to the random-line ap-
proach, including rotation invariance.
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Figure 4: Comparison of global feature fingerprints for different scene types, with each
column showing a different location. 103 random line extrema features (middle row) and
random circle extrema features (bottom row) with radii sampled from [15, 30] pixels show
that each image has a unique fingerprint. Insets depict greater detail around features with
saturation.

Analogue Randomness: Thermal Noise and Chua’s Circuit. A further itera-
tion on the above addresses the weakness of using a PRNG to select masks.
If an attacker was to obtain the seed or state of the offline system, all future
masks are deterministic. We present two possible methods of removing this
dependency – using thermal noise or Chua’s circuit to provide the analogue
signals to control a mirror, thus positioning a controllable patch of the image
on the single pixel sensor. The motor positions are determined by a super-
position of two analogue signals – a sample and hold value for the centre
of the feature circle and a oscillator to trace out the circle around it. The
radius of the circle is controlled by another held analogue signal. The details
of the simulation method and parameters are included in Appendix A.2.
These implementations further increase the difficulty of a remote attacker
reasoning about the optical computing.

Figure 4 visualises the proposed hashes by plotting histograms of extrema
pairs in 2D. These are shown for a range of input scenes. Here we compute
hashes over N = 103 random lines or circles, and smooth the display for
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visualisation using kernel density estimation [31, 32]. By construction, this
visualisation of the hashes must lie below the diagonal. For the random line
extrema, each line measures the dominant edge over the dimension of the
image. Since this spans the whole image, the features present are strongly
affected by the amount of saturation in the image. On the other hand, the
random circle extrema are more sensitive to local edges and features. When
these features lie close to the diagonal, the scene has textureless regions.
In the following we show that these hashes represent fingerprints that are
sufficiently unique to allow localisation.

4.3. Localisation

To localise based on the proposed hashes, we train a bag of words (BoW)-
based approach on a dense trajectory of hashes. At inference time, a query
hash from the sensor is presented for search and the most similar hash in
the reference trajectory is retrieved, localising the robot to the correspond-
ing point in the trajectory. This approach supports a variety of types of
visual words, allowing us to directly compare our hashing approach with
more conventional, privacy revealing features. We choose BoW over neural
network-based approaches because, although they may offer superior results,
they also show more complex behaviours that can be more difficult to inter-
pret. That our approach works well even with the simpler BoW localisation
is more revealing.

4.4. Results

We evaluate how well BoW-based image retrieval is able to predict the
position of unseen test images. We use the “Digiteo Seq 2” dataset [33],
which contains handheld photos from an office. We use a single camera for
the trajectory from this stereo dataset. We also have produced our own
indoor datasets, which will be made available. These contain colour images
from a mobile phone on a gimbal mount. There are two subsets: PNR, which
has two videos of the same room, and ABS, which has four trajectories of
130 images: normal, rotated (10-15◦), translated (15-30cm), and rotated +
translated, with all image indices matched correctly.

The BoW is trained on hashes from a training stride of one in every 20
images, and the remaining images are used for testing. When querying a test
image in the same dataset, we consider the localisation to be correct if the
true image index is within 30 frames (i.e. within one second of motion, or a
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fraction of a metre for a rolling platform travelling at a typical speed) of the
BoW best-match image.

In Figure 5, we measure the accuracy of localisation while varying the
number of curves used in our approach and compare against the same BoW
approach trained on SIFT features. For few features performance is weak,
but it increases as the number of features is increased. We also consider
randomizing the feature curves, circles or lines, for each input image, or
using a fixed set. The difference between these is not significant, and it
decreases as the number of features increase.

The proposed methods are ultimately able to meet and slightly exceed
the baseline performance of SIFT, with no significant advantage to either
lines or circles as curves in this case. The slight variation in SIFT perfor-
mance indicates that fine tuning of the image retrieval system is useful in
optimising performance for a particular dataset or context. We do not claim
that these methods outperform SIFT, but rather that they are comparable
in localisation accuracy while inherently maintaining privacy.

Empirically we observe that N ∼ 103 curves are required for good per-
formance at this task. This is a factor of 103 fewer than the number of
pixels in the input (megapixel) images. We investigate which parts of the
input images are reflected in the proposed hashes in Figure 6. We see that
the hashing procedure both reduces the amount of image information repre-
sented and obscures it in keeping with the recommendations in the previous
section. The hashing only reveals a small subset of the image, the hashing
process hides the locations of the extrema, and the distributions of maxima
and minima do not directly reflect the intensity distributions present in the
images.

From these observations we conclude that it is doubtful any algorithm
could reconstruct an image from its hash. However, even if one did succeed
at this, the fact that a very large number of distinct images produce the same
hash would prevent the attacker from knowing if they had constructed the
correct image.

We also experiment with how to make the features robust to variations in
brightness, and sensitivity to spacing in the training data. Figure 7 shows the
results of our experiments. In (a), we see the method is relatively insensitive
to training stride. We also consider the use of a contrast metric max−min
over each feature to weigh the importance, and observe this has little effect.
A study of other possible metrics is left as future work. In (b) we show
that normalisation improves robustness to brightness variation. This can
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Figure 5: Accuracy of localisation as a function of the number of features accumulated N ,
and for randomly changing curves or repetition of the same curves for each input scene.
The SIFT localisation approach is also shown for comparison. While initially performing
worse, for large N using randomly changing curves converges to the performance of fixed
curves. There is no significant difference between the circle and line methods, and perfor-
mance exceeds that of the conventional SIFT-based approach.

be seen in performance improvement at lower brightness factors. However,
there is an unexpected drop in accuracy at all brightness factors. We believe
this indicates there is useful information in absolute brightness. Thus, a
more robust privacy-preserving feature extractor would use both absolute
brightness and normalised values. This is a topic for future research.

Finally, we compare different feature extractors over many datasets. We
also include oriented FAST and rotated BRIEF (ORB), a local feature ex-
tractor aimed for use on real time platforms due to lower computational cost
than SIFT. Our results are presented in Table 1. In cases where the training
and testing sets are the same, all results are strong, indicating that these
methods can localise well for positions directly between known states. The
Chua’s circuit method performs best. In cases where the training and eval-
uation are different, SIFT is clearly the strongest, however our methods are
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Figure 6: Distribution of sources of data for proposed hashes. (a) original scene (b) dis-
tribution of pixel intensities in the scene. Once processed by our random circle extrema
pipeline (c,e) or random line extrema (d,f) the distributions do not sample the true distri-
bution evenly. The visualisation of the source of data (e,f) indicates that there are large
sparse regions in either case, with lines sampling more densely around extreme regions
as expected. The true locations of the data in the hash is not exposed, so an attacker
would have to recreate the image without knowing the location of the extrema, only their
intensities.
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Figure 7: a) Accuracy of localisation for different training strides (number of images
skipped in a trajectory to train on) comparing the random line (RL) feature extraction
to a single pixel camera (SPC) that takes the mean of the image. Increasing the training
stride decreases the amount of feautres the system is exposed to and increases the motion
between known and tests frames, decreasing performance. Normalising the features to the
mean of the image decreases performance, indicating that the mean holds discriminating
power. However, the mean alone (SPC) performs poorly. b) Accuracy of localisation
as a function of the brightness scaling (including saturation effects) applied to the test
image, after training on a unaltered set. Absolute extrema are strongly effected by even
small changes in brightness and falloff rapidly. Normalising random circle features leads
to robustness for dimmer scenes but saturation results in reduced performance. Local
methods produce features that are more robust to these effects.

equally or more robust that ORB. In these experiments, all methods have the
same number of features. We hypothesise that the Chua’s circuit method is
the best performing from our implementations since it covers a smaller area
of the image at a higher density. More complicated masks, however, could
use the global field of view of the DMD to measure more of the image at
once. Optimization of the optical-analogue processing is an exciting avenue
of future work.

An outline of the hyperparameters used in all feature extaction methods
can be found in Appendix A.1. We tuned these parameters manually to
allow us to draw the most important generaliseable conclusions, however
anticipate a more rigorous approach such as a random search over a target
dataset could further improve task performance.

We also justify the use of interpolation in simulation. For the motorised
mirror case, the sampling is truly continuous, while for the DMD imple-
mentation the maximum resolution of commercially available parts is up to
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Table 1: Comparison of localisation accuracy (%) over different datasets. Our methods
are all run with N = 3000 features. On high resolution datasets, the privacy preserving
methods are of similar utility to conventional privacy revealing methods SIFT and ORB.

Train Set Test Set SIFT ORB UC 1 UL2 TC3 CC4

Digiteo seq 2 Digiteo seq 2 92.02 92.96 90.30 89.20 95.46 95.15
PNR PNR 98.19 86.28 91.70 89.17 90.61 94.95

PNRrotated PNRrotated 86.64 90.97 95.31 92.78 97.83 96.75
ABS norm ABS rot 84.09 68.18 65.91 63.64 63.64 79.55
ABS norm ABS trans 90.91 72.73 70.45 70.45 70.45 72.73
ABS norm ABS rot trans 84.09 63.64 61.36 63.64 70.45 72.73
1 Uniform-drawn circles, 2 Uniform-drawn lines
3 Thermal (Gaussian)-drawn circles, 4 Chua’s circuit-drawn circle centres

3840×2160 pixels (e.g. TI DLP781TE), which is a factor of 4 times larger
than dataset images.

5. Conclusions

We proposed a new class of inherently privacy-preserving vision system
that fills important gaps in current approaches and opens opportunities for
follow-on work. We described a set of principles by which such systems can
be designed, moving information scrambling and destroying processing out
of the digital domain, and thus private data out of reach of remote attackers.
The proposed systems never capture images nor do they capture enough
information to allow reconstruction of private images.

We demonstrated our approach through a case study in inherently privacy-
preserving localisation. The success of this study lends support to the prac-
ticality of our approach. By demonstrating the feasibility of four different
implementations, we see that, despite the restrictions of optical-analogue
processing, there is a vast, expressive family of feature extractors to be dis-
covered.

More broadly, this work is a call to action for the robotic vision commu-
nity. We see a path forward for establishing the trustworthiness of inherently
privacy-preserving vision systems:

• Characterising and refining hardware implementations based on the
approaches proposed here;
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• Establishing meaningful metrics for privacy in the context of optical-
analogue processing and hashing;

• End-to-end design of optical, analogue and digital processing to tackle
a broader range of vision tasks;

• Establishing trustworthiness through rigorous attack and refinement of
the concepts in this paper;

• Communicating and educating in an accessible manner to address the
barriers to societal acceptance of sighted, privacy-preserving systems.

Privacy concerns presently prevent deployment of robotic systems in im-
portant contexts including healthcare, manufacturing and defence; rising to
this challenge presents a unique opportunity to benefit an otherwise unreach-
able part of society.

Appendix A. Implementation Details

Appendix A.1. Method Hyperparameters

The hyperparmeters in this work were tuned manually. We found a wide
range of parameters to suit the localisation of a single dataset. Fine tuning
(through e.g. random search) could lead to improvements in task perfor-
mance.

For the uniform circles with input images of dimension 1280× 720, radii
drawn from the uniform distribution of [15, 50] pixels showed strong results.

The centre of the circles in the thermal noise method were generated by
(x, y) ∼ N (S/2, S/4), where S is a vector of the image size. Centres that
were outside the image were saturated to the boundary of the image. The
factor 1/4 for the standard deviation showed good results but could be tuned
further.

For both the thermal and Chua’s circuit circles, radii are drawn from a
Gaussian noise source. If the drawn value is below 2 pixels, it saturates to 2
pixels. This can be implemented in analogue hardware using a operational
amplifier. The distributions that gave good performance were N (60, 20) for
the thermal implementation and N (40, 20) for the Chua’s circuit implemen-
tation.
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Appendix A.2. Chua’s Circuit Implementation

To generate the sampling patterns for the Chua cirucit-based features,
we use the dynamics of the form [34]

ẋ = −α(x− y)− αf(x), (A.1)

ẏ = z − (y − x), (A.2)

ż = −βy − γz, (A.3)

where derivatives are with respect to a dimensionless time τ , x = x(τ), y =
y(τ) as voltages over capacitors, z = z(τ) as the current through the in-
ductor, f(x) is a nonlinear function describing the Chua diode. For this
implementation, we use the form

f(x) = m1x+
1

2
(m0 −m1)(|x+ 1|− |x− 1|), (A.4)

where m0,mi are slope coefficients determined by resistor values. We refer
the interested reader to previous work [34] for details about how to convert
from the dimensionless form above to circuit parameters.

To generate our data, we use parameter values of α = 15.6, β = 30, γ =
0, m0 = −15/7, m1 = −5/7. The dynamics are solved using a 4th order
Runge-Kutta method [35], for 180, 000 time units with initial conditions of
(0.1, 2, 1.4).

This is reduced to two dimensions through a linear transformation by
multiplication with the matrix

�

xc, yc
�

=
�

x, y, z
�





0.0204 −0.0847
0.0911 −0.9490
−0.1196 −0.0392



 , (A.5)

where (xc, yc) is the position of the centre of the circle. This transformation
is the one that minimises the standard deviation (a proxy for maximising
coverage) of the trajectory. This is then scaled linearly such that the bounds
of the simulation data correspond to the bounds of the image. All of these
transformation could be implemented using standard gain and addition cir-
cuits from the signals in Chua’s circuit directly.

To sample the locations of the feature, cubic spline interpolation is used.
For each image, the feature extractor starts at a random time in the simu-
lation range and steps forward 3 seconds between features to generate the
chaotic data used in the centre of the circles.
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