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Distinguishing Refracted Features using Light Field

Cameras with Application to Structure from Motion

Dorian Tsai1, Donald G. Dansereau2, Thierry Peynot1 and Peter Corke1

Abstract—To be effective, robots will need to reliably operate
in scenes with refractive objects in a variety of applications; how-
ever, refractive objects can cause many robotic vision algorithms,
such as structure from motion, to become unreliable or even fail.
We propose a novel method to distinguish between refracted and
Lambertian image features using a light field camera. Where
previous refracted feature detection methods are limited to light
field cameras with large baselines relative to the refractive
object, our method achieves comparable performance, and we
extend these capabilities to light field cameras with much smaller
baselines than previously considered, where we achieve up to 50%
higher refracted feature detection rates. Specifically, we propose
to use textural cross-correlation to characterise apparent feature
motion in a single light field, and compare this motion to its
Lambertian equivalent based on 4D light field geometry. For
structure from motion, we demonstrate that rejecting refracted
features using our distinguisher yields lower reprojection error,
lower failure rates, and more accurate pose estimates when
the robot is approaching refractive objects. Our method is a
critical step towards allowing robots to operate in the presence
of refractive objects.

Index Terms—Computer Vision for Automation; Visual-Based
Navigation; Computational Imaging; Light Fields

I. INTRODUCTION

ROBOTS for the real world will inevitably interact

with refractive objects. Robots must contend with wine

glasses and clear water bottles in domestic applications [1];

glass and clear plastic packaging for quality assessment and

packing in manufacturing [2]; as well as water and ice for

outdoor operations [3]. Automating these applications typi-

cally requires either object structure and/or robot motion to

automate. Structure from motion (SfM) is a technique to

recover both scene structure and camera pose from 2D images,

and is widely applicable to many systems in computer and

robotic vision [4], [5]. Many of these systems assume the scene

is Lambertian, in that a 3D point’s appearance in an image

does not change significantly with viewpoint. However, non-

Lambertian effects, including specular reflections, occlusions,

and refraction, violate this assumption. They pose a major

problem for modern robotic vision systems because their
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Fig. 1. (Left) A light field camera mounted on a robot arm was used to
distinguish refractive objects in a scene in SfM experiments. (Right) SIFT
features that were distinguished as Lambertian (blue) and refracted (red),
revealing the presence of the refractive cylinder in the middle of the scene.

appearance depends on the camera’s viewing pose and the

visual texture of the object’s background.

Image features are distinct points of interest in the scene

that can be repeatedly and reliably identified from different

viewpoints, and have been used in SfM, but also many other

robotic vision algorithms, such as object recognition, image

segmentation, visual servoing, visual odometry, and simulta-

neous localization and mapping (SLAM). In SfM, features are

often used for image registration, and serve as a basis for the

entire SfM pipeline. When reconstructing a scene containing a

refractive object, such as Fig. 1, image features visible through

the object appear to move differently from the rest of the scene.

They can cause inconsistencies, errors, and even failures for

modern robotic vision systems.

Light field (LF) cameras offer a potential solution to the

problem of refractive objects. LF cameras simultaneously

capture multiple images of the same scene from different

viewpoints in a regular and dense sampling. The LF could

allow robots to more reliably and efficiently capture the

behaviour of refractive objects in a single shot by exploiting

the known geometry of the multiple views. We take 2D image

features from the central view of the LF, and determine which

of these have been distorted in the 4D LF, which we refer

to as refracted features (RFs). We use this as a method of

distinguishing good features for SfM.

Our main contributions are the following.

• We extend previous work to develop a light field fea-

ture distinguisher for refractive objects. In particular, we

detect the differences between the apparent motion of

non-Lambertian and Lambertian features in the 4D light

field to distinguish refractive objects more reliably than

previous work.

• We propose a novel approach to describe the apparent

motion of a feature observed within the 4D light field

based on textural cross-correlation.
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• We extend RF distinguishing capabilities to lenslet-

based LF cameras that are limited to much smaller

baselines by considering non-uniform, non-Lambertian

apparent motion in the light field. All light fields

captured for these experiments are available at

https://tinyurl.com/LFRefractive.

• We show that by distinguishing and rejecting refracted

features with our method, SfM performs better in scenes

that include refractive objects.

The main limitation of our method is that it requires

background visual texture to be distorted by the refractive

object. Our method’s effectiveness depends on the extent to

which the appearance of the object is warped in the light field.

This depends on the scene geometry and refractive indexes of

the object involved.

Next we describe the related work, provide background on

LF geometry, and explain our method for distinguishing RFs.

We show experimental results for detection with different LF

cameras, and validation in the context of monocular SfM.

Finally, we conclude the paper and explore future work.

II. RELATED WORK

A variety of strategies for detecting and reconstructing

refractive objects using vision have been investigated [2].

However, many of these methods require known light sources

with bulky configurations that are impractical for mobile robot

applications. Multiple monocular images have been used to

recover refractive object shape and pose [6]; however, image

features were manually tagged throughout camera motion,

emphasizing the difficulty of automatically identifying and

tracking RFs due to the severe magnification of the background

and image distortion from the object.

LFs have been used to obtain better depth maps for Lam-

bertian and occluded scenes [7]; however, the performance

of these algorithms suffers for refractive objects. Wanner et

al. recently considered planar refractive surfaces and recon-

structed different depth layers that accounted for both refrac-

tion through a thin sheet of glass, and the reflection caused

by its glossy surface [8]. However, this work was limited to

thin planar surfaces and single reflections. Which depth layer

was Lambertian, reflective or refractive was not distinguished,

and refractive objects that caused significant distortion were

not handled. Although our work does not determine the dense

structure of the refractive object, our approach can distinguish

features from objects that significantly distort the LF.

For refractive object recognition, Maeno et al. proposed a

light field distortion feature (LFD), which models an object’s

refraction pattern as image distortion based on differences in

the corresponding image points between the multiple views of

the LF, captured by a large-baseline (relative to the refractive

object) LF camera array [9]. However, the authors observed

significantly poor recognition performance due to specular

reflections, as well as changes in camera pose.

Xu et al. used the LFD as a basis for refractive object

image segmentation [10]. Corresponding image features from

all views in the LF were fitted to the single normal of a 4D

hyperplane using singular value decomposition (SVD). The

smallest singular value was taken as a measure of error to

the hyperplane of best fit, for which a threshold was applied

to distinguish RFs. However, we will show that a 3D point

cannot be described by a single hyperplane in 4D. Instead, it

manifests as a plane in 4D that has two orthogonal normal

vectors. Our approach builds on Xu’s method and solves for

both normals to find the plane of best fit in 4D; thus allowing

us to distinguish more types of refractive objects with a higher

rate of detection.

Furthermore, a key difficulty in feature-based approaches

in the LF is obtaining the corresponding feature locations

between multiple views. Both Maeno and Xu used optical flow

between two views for correspondence, which does not exploit

the unique geometry of the LF. We propose a novel textural

cross-correlation method to associate features in the LF by

describing their apparent motion in the LF, which we refer to

as feature curves. This method directly exploits LF geometry

and provides insight on the 4D nature of features in the LF.

Our interest in LF cameras stems from robot applications

that often have mass, power and size constraints. Thus, we are

interested in employing compact lenslet-based LF cameras to

deal with refractive objects. However, most previous works

have utilized gantries [8], or large camera arrays [9], [10];

their results do not transfer to LF cameras with much smaller

baselines, where distortion is less apparent, as we show later.

We then demonstrate the performance of our method over two

different LF camera architectures with dramatically different

baselines. Ours is the first method, to our knowledge, capable

of identifying RFs using lenslet-based LF cameras.

For LF cameras, LF-specific features have been investigated.

SIFT features augmented with “slope”, a LF-based property

related to depth, were proposed by the authors for visual

servoing using a LF camera [11]; however, transparent objects

were not considered. Recent work by Teixeira et al. projects

SIFT features found in all views into their corresponding

epipolar plane images (EPIs), and identifies reliable Lamber-

tian features as features that are repeatedly grouped in their

respective EPIs [12]. However, their approach did not consider

any non-linear feature behaviour, while our method aims

to detect these non-Lambertian features, and is focused on

characterising them. In this paper, we detect unique keypoints

that reject distorted content and work well for SfM. This

could be useful for many feature-based algorithms, includ-

ing recognition, segmentation, visual servoing, simultaneous

localization and mapping, visual odometry, and SfM.

We are interested in exploring the impact of our RF distin-

guisher in a SfM framework. While there has been significant

development in SfM in recent year for conventional monocular

and stereo cameras [5], Johannsen et al. were the first to

consider LFs in the SfM framework [13]. Although our work

does not yet explore LF-based SfM, we investigate SfM’s

performance with respect to RFs, which has not yet been fully

explored. We show that rejecting RFs reduces reprojection

error and failure rate near refractive objects, improving camera

pose estimates.
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III. LIGHT FIELD BACKGROUND

We parameterize the LF using the relative two-plane param-

eterization (2PP) [14]. A ray with coordinates φ = [s, t, u, v]T ,

where T represents the vector transpose, is described by two

points of intersection with two parallel reference planes; an

s, t plane conventionally closest to the camera, and a u, v
plane conventionally closer to the scene, separated by arbitrary

distance D.

For a Lambertian point in space P = [Px, Py, Pz]
T ∈ R

3,

the rays follow a linear relationship [3]
[
u
v

]

=
(

D
Pz

)
[
Px − s
Py − t

]

, (1)

where each of these equations describes a hyperplane in 4D.

A hyperplane is defined as a vector subspace that has 1

dimension less than the space it is contained within [15]. Thus

a hyperplane in 4D is a 3D manifold, and can be described

by a single equation

n1s+ n2t+ n3u+ n4v + n5 = 0, (2)

where n = [n1, n2, n3, n4]
T is the normal of the hyperplane.

Similarly, a plane is defined as a 2D manifold; it can be

described by two linearly independent vectors. Therefore,

a plane in 4D can be defined by the intersection of two

hyperplanes and (1) can be re-written in the form,

[
D
Pz

0 1 0

0 D
Pz

0 1

]

︸ ︷︷ ︸

m







s
t
u
v






=

[
DPx

Pz
DPy

Pz

]

, (3)

where m contains the two orthogonal normals to the plane.

Therefore, a Lambertian point in 3D manifests as a plane in

4D, which is characterized by two linearly-independent normal

vectors that each define a hyperplane in 4D. In the literature,

this relationship is sometimes referred to as the point-plane

correspondence [3].

Light field slope w relates the rate of change of image plane

coordinates, with respect to viewpoint position, for all rays

emanating from a point in the scene. In the literature, slope

is sometimes referred to as “orientation” [8], and other works

compute slope as an angle [16]. The slope comes directly from

(1) as w = −D/Pz, and is clearly related to depth.

IV. DISTINGUISHING REFRACTIVE FEATURES

EPIs graphically illustrate the apparent motion of a fea-

ture across multiple views [17]. If the entire light field L
is given as L(s, t, u, v), EPIs represent a 2D slice of the

4D LF. A horizontal EPI is given as L(s, t∗, u, v∗), and a

vertical EPI is denoted as L(s∗, t, u∗, v), where ∗ indicates

a variable is fixed while others may vary. The central view

of the LF is L(s0, t0, u, v), and is equivalent to what a

monocular camera would provide from the same pose. As

shown in Fig. 2, features from a Lambertian scene point are

linearly distributed with respect to viewpoint, unlike features

from highly-distorting refractive objects. We compare this

difference in apparent motion between Lambertian and non-

Lambertian features to distinguish RFs.

(a) (b)

Fig. 2. (a) Projection of the linear behaviour of a Lambertian feature, and (b)
the non-linear behaviour of a refracted feature with respect to linear motion
along the viewpoints of a light field.

(a) (b)

Fig. 3. (a) In the crystal ball LF [18], a vertical EPI (b) is sampled from a
column of pixels (yellow), where nonlinear RF motion caused by the crystal
ball are apparent in the middle (blue). Straight lines correspond to Lambertian
features (orange).

Fig. 3 shows the central view and an example EPI of a

crystal ball LF (large baseline) from the New Stanford Light

Field Archive, captured by a camera array [18]. The physical

size of cameras often necessitates larger baselines for LF

capture. A Lambertian point forms a straight line in the EPI,

shown in Fig. 3b. The relation between slope and depth is also

apparent in this EPI.

RFs appear as nonlinear curves in the EPI, as seen in

Fig. 3b. RF detection in the LF simplifies to finding features

that violate (1) via identifying nonlinear feature curves in the

EPIs and/or inconsistent slopes between two independent EPI

lines, such as the vertical and horizontal EPIs. We note that

occlusions and specular reflections also violate (1). Occlusions

appear as straight lines, but have intersections in the EPI.

Edges of the refractive objects, and objects with low distortion

also appear Lambertian. Specular reflections appear as a

superposition of lines in the EPI. We will address these issues

in future work. In this paper, we discuss how we extract these

4D feature curves and how we identify RFs.

A. Extracting Feature Curves

For a given feature from the central view at coordinates

(u0, v0), we must determine the feature correspondences

(u′, v′) from the other views, which is equivalent to finding

the feature’s apparent motion in the LF. In this paper, we start

by detecting SIFT features [19] in the central view, although

the proposed method is agnostic to feature type.

Next, we select a template surrounding the feature which

is k-times the feature’s scale. We determined k = 5 to yield

the most consistent results. 2D Gaussian-weighted normalized
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(a) (b)

Fig. 4. (a) The cross-correlation response for corresponding views for a
typical scene. (b) The resultant correlation EPI, created by stacking the
cross-correlation response from adjacent views. The ridge (yellow) along this
correlation EPI corresponds to the desired feature curve.

cross-correlation (WNCC) is used across views to yield cor-

relation images, such as Fig. 4a. To reduce computation, we

only apply WNCC along the central row and column of LF

views.

For Lambertian features, we plot the feature’s correlation

response with respect to the views to yield a correlation

EPI. Illustrated in Fig. 4b, the ridge of the correlation EPI

corresponds to the feature curve from original EPI.

For RFs, we hypothesize that the distortion of the feature’s

appearance between views won’t be too strong as to make the

correlation response unusable. Thus, the correlation response

will be sufficiently strong that the ridge of the correlation EPI

will still correspond to the desired feature curve. This textural

cross-correlation method allows us to focus on the image

structure, as opposed to the image intensities. Our method

can be applied to any LF camera, and directly exploits the

geometry of the LF.

B. Fitting 4D Planarity to Feature Curves

Similar to [10], we consider the ray passing through the

central view φ(0, 0, u0, v0). The corresponding feature coor-

dinates in other views are φ′(s, t, u′, v′). The LFD is then

defined as the set of relative differences between φ and φ′ as

in [9]:

LFD(u, v) = {(s, t,∆u,∆v)|(s, t) 6= (0, 0)}, (4)

where ∆u = u′−u0, and ∆v = v′−v0 are feature disparities.

These disparities are linear with respect to linear camera

translation. The disparities from RFs deviate from this linear

relation. Fitting them to (1) yields the plane of best fit in 4D,

and the error of this fit provides a measure of whether or not

our feature is Lambertian.

This plane in 4D can be estimated from the feature corre-

spondences given by the feature curves fh(s, t
∗,∆u, v∗−v0),

and fv(s
∗, t, u∗ − u0,∆v) that we extract from the horizontal

and vertical EPIs, respectively.

As discussed in Section III, our plane in 4D has two

orthogonal normals, nh and nv . The 4D plane containing φ
can be given as

[
nh,1 nh,2 nh,3 nh,4

nv,1 nv,2 nv,3 nv,4

]

︸ ︷︷ ︸
[

nh nv

]T







s
t

∆u
∆v






=

[
0
0

]

. (5)

Note that the constants on the right-hand side of (3) cancel

out because we consider the differences relative to u0 and

v0. The positions for s, t can be obtained by calibration [20],

although the nonlinear behaviour still holds when working

with uncalibrated units of “views”.

We can estimate nh and nv by fitting the N points from

fh and M points from fv into the system,












(s, t∗, ∆u, v∗ − v0)1
...

...
...

...

(s, t∗, ∆u, v∗ − v0)N
(s∗, t, u∗ − u0, ∆v)1

...
...

...
...

(s∗, t, u∗ − u0, ∆v)M













︸ ︷︷ ︸

A







n1

n2

n3

n4







︸ ︷︷ ︸

n

=






0
...

0




 . (6)

We then use SVD on A to compute the singular vectors, and

corresponding singular values. The 2 smallest singular values,

λ1 and λ2, correspond to 2 normals n1 and n2 that best satisfy

(6) in the least-squares sense. The magnitude of the singular

values provides a measure of error of the planar fit. Smaller

errors imply stronger linearity, while larger errors imply that

the feature deviates from the 4D plane.

The norm of λ1 and λ2 may be taken as a single measure

of planarity; however, doing so masks the case where a

refractive object has unequal errors between the two EPIs,

such as a 1D refractive object (glass cylinder) that causes

severe distortion along one direction, but relatively little along

the other. Therefore, we reject those features that have large

errors in either horizontal or vertical hyperplanes. This planar

consistency, along with the slope consistency discussed in the

following section, make the proposed method more sensitive

to distorted texture than prior work that considered only the

smallest singular value, which we refer to as hyperplanar

consistency [10].

C. Measuring Slope Consistency

Slope consistency is a measure of how different the slopes

are between the two hyperplanes for a given feature. As seen in

(1), these slopes must be equal for Lambertian points. We can

compute the slopes for each hyperplane given their normals.

For the horizontal hyperplane, we solve for in-plane vector

q = [qs, qu]
T , by taking the inner product of the two vectors

nh and nv from (5) in
[
nh,1 nh,3

nv,1 nv,3

] [
qs
qu

]

=

[
0
0

]

, (7)

where q is constrained to the s, u plane, because we choose

the first and third elements of nh and nv . This system is

solved using SVD, and the minimum singular vector yields

q. The slope for the horizontal hyperplane, wsu is then

wsu = qs/qu. The slope for the vertical hyperplane wtv is

similarly computed from the second and fourth elements of

nh and nv . Slope consistency c is calculated as the square

of differences between slopes. Thus features with large planar

errors and inconsistent slopes are identified as belonging to a

highly-distorting refractive object. Three thresholds for planar

consistency and slope consistency are used to determine if a

feature has been distorted (though we refer to it as a refracted

feature).
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Note that our method is not limited to detecting distortion

aligned with the horizontal and vertical axes of the LF. We can

further check for λ1, λ2 and c along other axes by rotating

the LF’s s, t, u, v frame and repeating the check.

V. EXPERIMENTAL RESULTS

We present our experimental set-up and show how our

methods extend from LF camera arrays to lenslet-based LF

cameras. Finally, we use our method to reject RFs for monoc-

ular SfM in the presence of refractive objects, and demonstrate

improved reconstruction and pose estimates.

A. Experimental Set-up

For LFs captured by a camera array, we used the Stanford

New Light Field Database [18]. We focused on two LFs

that captured the same scene of a crystal ball surrounded

by textured tarot cards. The first was captured with a large

baseline (16.1 mm/view over 275 mm), while the second was

captured with a smaller baseline (3.7 mm/view over 64 mm).

This allowed us to compare the effect of LF camera baseline

for RFs.

Smaller baselines were considered using a lenslet-based LF

camera. Also known as a plenoptic camera, these LF cameras

are of interest in robotics due to their simultaneous view

capture, and typically lower size and mass, compared to LF

camera arrays and gantries. In this section, the Lytro Illum was

used to capture LFs with 15×15 views, each 433×625 pixels.

Dansereau’s Light Field Toolbox was used to decode the LFs

from raw LF imagery to the 2PP, converting the Illum to an

equivalent camera array with a baseline of 1.1 mm/view over

16.6 mm [20]. To compensate for the extreme lens distortion

of the Illum, we removed the outer views, reducing our LF to

13× 13 views. The LF camera was fixed at 100 mm zoom.

It is important to remember that our results depend on a

number of factors. The geometry and refractive index of a

transparent object affects its appearance. Higher curvature and

thickness yield more warping. Second, viewing distance, and

background distance to the object directly affect how much

distortion can be observed. Similarly, a larger camera baseline

captures more distortion. When possible, these factors were

held constant throughout different experiments.

B. RF Detection with Different LF Cameras

For the large baseline crystal ball LF captured by the camera

array, Lambertian features were captured by our textural cross-

correlation approach as straight lines, while RFs were captured

as nonlinear curves, as shown in Fig. 5. We observed that

while the RF’s correlation response often had a much weaker

response compared to the Lambertian case, local maxima

were observed near the feature’s corresponding location in the

central view. Thus, taking the local maxima of the correlation

EPI yielded the desired feature curves. Our textural cross-

correlation method enables us to extract RF curves without

focusing on image intensities.

In contrast, Fig. 6 shows the horizontal and vertical EPIs for

a RF taken from the small baseline crystal ball LF. The feature

(a) (b)

Fig. 5. Sample feature curves extracted from the large baseline LF’s
correlation EPI. (a) A straight Lambertian feature curve (red) in the EPI.
(b) A RF curve exhibiting nonlinear behaviour in the EPI.

(a) (b)

Fig. 6. Sample (a) horizontal and (b) vertical EPIs from the crystal ball LF
with small baseline. From the feature’s (u, v) location in the central view
(red), extracted feature curves (green) match the plane of best fit (dashed
blue). RFs appear almost linear, and are thus much more difficult to detect.

curves appear straight, despite being distorted by the crystal

ball. However, we observed that the slopes were inconsistent,

which could still be used to distinguish RFs.

To distinguish RFs, thresholds for planarity and slope

consistency were selected by exhaustive search over a set

of training LFs, while evaluated on a different set of LFs,

with the exception of the crystal ball LFs where only 1 was

available for each baseline. For comparison to state of the art,

parameter search was performed for both Xu’s method and

our method independently, to allow for the best performance

of each method.

The ground truth RFs were identified via hand-drawn masks

in the central view. It was assumed that all features visible and

passing through the refractive object were distorted. Detecting

a RF was considered positive, while returning a Lambertian

feature was negative. Thus a true positive (TP) is a correctly

detected RF, while a true negative (TN) is a correctly detected

Lambertian feature. A false positive (FP) is an incorrectly

detected RF. A false negative (FN) is an incorrectly detected

Lambertian feature.

Table I shows the detection results, and Fig. 7 shows sample

views of refracted features (red) and Lambertian features

(blue). For the camera array, only 1 LF was available [18] for

each baseline b. For the lenslet-based camera, 10 LFs from

a variety of different backgrounds were used for each object

type. Our method had up to a 50% higher TP rate (TPR), up

to a 58% lower FN rate (FNR), and similar FP rates (FPR)

and TN rates (TNR) compared to Xu’s method for the camera

array, which we attributed to more accurately fitting the plane

in 4D, as opposed to a single hyperplane. For the lenslet-based

camera, we attributed our 10 times increase in TPR and 3.8
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Fig. 7. Comparison of Xu’s method (left), and our method (right), detecting
Lambertian (blue), and refracted (red) SIFT features. The top row shows the
crystal ball captured with a large baseline LF (cropped) [18]. Both methods
detect RFs; however, our method outperforms Xu’s. In the second and third
rows, a cylinder and sphere captured with a small-baseline lenslet-based LF
camera. Our method successfully detects more RFs with fewer false positives
and negatives.

TABLE I
COMPARISON OF OUR METHOD AND STATE-OF-THE-ART USING A LF

CAMERA ARRAY AND LENSLET-BASED CAMERA FOR DETECTING RFS

Xu’s Proposed

b [mm] TPR TNR FPR FNR TPR TNR FPR FNR

a
rr

a
y crystal ball

275 0.58 0.97 0.02 0.41 0.66 0.95 0.05 0.34

68 0.42 0.91 0.08 0.89 0.63 0.94 0.05 0.37

le
n

sl
et

sphere

1.1 0.43 0.36 0.64 0.58 0.48 0.95 0.04 0.52

cylinder

1.1 0.08 0.80 0.20 0.92 0.82 0.81 0.13 0.24

times decrease in FNR for the cylinder case to accounting for

slope consistency, which Xu did not address.

The FPs included some occlusions, which appeared non-

linear in the EPI [21], but were not yet distinguished in

our implementation. However, this may still be beneficial as

occlusions are non-Lambertian, and thus undesirable for most

algorithms. Sampling from all the views in the LF would likely

improve the results for both methods, as more data would

improve the planar fit.

With the lenslet-based LF camera, we investigated two

different types of refractive objects: a glass sphere and an

acrylic cylinder, shown in the bottom two rows of Fig. 7.

The sphere exhibited significant distortion along both the

horizontal and vertical viewing axes, while the cylinder only

exhibited significant distortion perpendicular to its longitudinal

axis. As shown in Table I, Xu’s method was unable to

detect the refractive cylinder (TPR at 0.08), while our method

succeeded with 10 times higher TPR. Nonlinear feature curves

were not apparent from the small baseline of the lenslet-based

camera, but slope consistency proved to be a very strong

indicator of distortion.

Our method detected RFs of the refractive sphere with an

11% increase in TPR, a significant 164% increase in TNR, and

93% decrease in FPR. We attribute this success to accounting

for slope consistency. Features that were located close to the

edge of the sphere appeared more linear, and thus were not

always detected. Other FPs were due to specular reflections

that appeared like well-behaved Lambertian points. Finally,

there were some FNs near the middle of the sphere, where

there is identical apparent motion in the horizontal and vertical

hyperplanes.

C. Rejecting RFs for Structure from Motion

We examine the impact of rejecting RFs in a SfM pipeline.

We captured 10 sequences of LFs that gradually approached a

refractive object using the same lenslet-based LF camera. We

used Colmap, a publicly-available SfM implementation [22].

Incremental monocular SfM using the central view of the LF

was performed on the sequences of images. Each successive

image had an increasing number of RFs, making it increas-

ingly difficult for SfM to converge. If SfM converged, a sparse

reconstruction was produced, and the estimated poses were

further analysed. The scene is shown in Fig. 1 with a textured,

slanted background plane behind a refractive cylinder.

For each LF, SIFT features in the central view were de-

tected, creating an unfiltered set of features, some of which

were refracted. Our distinguisher was then used to remove

RFs, creating a filtered set of features. Both sets were im-

ported separately into the SfM pipeline, which included its

own outlier rejection and bundle adjustment. This produced

respective unfiltered and filtered SfM results for comparison.

We note that outlier rejection schemes, such as RANSAC,

are often used to reject inconsistent features, including RFs.

While RANSAC successfully rejected many RFs, we observed

more than 53% of inlier features used for reconstruction were

actually RFs in some unfiltered cases. This suggested that in

the presence of refractive objects, RANSAC is insufficient

on its own for robust and accurate structure and motion

estimation.

We measured the ratio of RFs r = ir/it, where ir is the

number of RFs in the image, and it is the total number of

features detected in the image. We considered the reprojection

error as it varied with r. Shown in Fig. 8a, the error for the

unfiltered case was consistently higher (up to 42.4% higher

for r < 0.6 in the red case). Additionally, the unfiltered case

often failed to converge, while the filtered case was successful,

suggesting better convergence. Sample scenes that caused the

unfiltered SfM to fail are shown in Fig. 8b and 8c. These

scenes could not be used for SfM without our method to retain

consistent features for reconstruction.

For the monocular SfM, scale was obtained by solving the

absolute orientation problem using Horn’s method between

the estimated pose ps and ground truth pose pg , and only
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Fig. 8. Rejecting RFs with our method yielded lower reprojection errors and
better convergence for the same image sequences. (a) SfM reprojection error
vs RF ratio for the unfiltered case containing all the features, including RFs
(dashed), and filtered case excluding RFs (solid). The spike in error at 0.6
r for filtered sequence 2 was due to insufficient inlier matches for SfM to
provide reliable results. (b) and (c) show example images for the refractive
cylinder and sphere (yellow), respectively, where SfM could not converge
without filtering RFs using our method. Detected features are shown in blue
crosses, with features identified as refracted shown in red circles.

using the scale. An OptiTrack system was used for ground

truth camera pose. Fig. 9a shows example pose trajectories

reconstructed by SfM for a filtered and unfiltered LF sequence

with the ground truth. The filtered trajectory had a more

accurate absolute pose over the entire sequence of images.

Fig. 9b and 9c show the relative instantaneous pose error ei,
computed as ei = |(ps,i − ps,i−) − (pg,i − pg,i−)|

2 for

image i, in translation and rotation. Although erot was similar

< 0.02◦, etr had larger errors up to 10 mm more than the

filtered case. This suggested that filtering for RFs yielded more

accurate pose estimates from SfM.

In Table II, we show filtering RFs leads to an average of

4.28 mm lower etr, and 0.48◦ lower erot relative instantaneous

pose errors over 5 LF sequences with different objects, poses

and backgrounds, except for Seq. 6, where the number of inlier

feature matches for SfM dropped below 50. The number of

LFs in each sequence varied, because the unfiltered case could

not converge with more images at the end of the sequence

(that had higher r). Seq. 7 and 8 shows where only our filtered

case converged, so that SfM produced a trajectory for analysis.

Thus, filtering RFs using our method yielded more consistent

(non-refractive) features that improved the accuracy of the SfM

pose estimates, and made it more robust in the presence of

refractive objects.

For the cases where SfM converged in the presence of re-

fractive objects, we created a sparse reconstruction of the scene

of Fig. 1, which was primarily the Lambertian background

plane, since we attempted to remove points distorted by the
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Fig. 9. For cases where SfM converged, filtering out the RFs yielded more
accurate pose estimates. (a) Sample pose trajectory with the filtered (red)
closer to ground truth (blue), compared to the unfiltered case (green). Relative
instantaneous pose error for translation (a) and rotation (b) are shown over
a sample LF sequence, where the filtered case was consistently lower than
the unfiltered case. (c) With our method, the refractive feature ratio for the
filtered case was lower than the unfiltered case.

TABLE II
COMPARISON OF MEAN RELATIVE INSTANTANEOUS POSE ERROR FOR

UNFILTERED AND FILTERED SFM-RECONSTRUCTED TRAJECTORIES

Unfiltered Filtered

Seq. #LFs etr [mm] erot [◦] #inliers etr erot #inliers

1 10 18.86 5.72 160 8.09 4.52 127
2 10 10.45 4.66 285 7.10 4.29 140
3 10 10.17 4.52 281 6.94 4.09 186
4 9 11.13 4.70 296 7.50 4.37 224
5 8 6.07 4.47 201 5.66 4.39 196
6 10 6.52 0.74 207 15.21 1.58 50
7 10 N/A N/A N/A 8.51 4.02 155
8 10 N/A N/A N/A 6.95 4.16 230

cylinder. Sample reconstructions for both the unfiltered and

filtered cases are shown in Fig 10. Both point clouds were

centered about the origin and rotated into a common frame.

For visualization, an overlay of the scene geometry best fit

to the background plane is provided. The unfiltered case had
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(a) Side view, unfiltered (b) Side view, filtered

(c) Top view, unfiltered (d) Top view, filtered

Fig. 10. For the scene shown in Fig. 1a, (a,c) the unfiltered case resulted
in a sparse reconstruction where many points were generated between the
refractive cylinder (red) and the background plane (blue). In contrast, (b,d)
the filtered case resulted in a reconstruction with fewer such points, and the
resulting camera pose estimates were more accurate. The cylinder and plane
are shown to help with visualization only. The camera (green) represents the
general viewpoint of the scene, not the actual position of the camera.

to be re-scaled according to the scene geometry (as opposed

to via the poses done previously) for comparison. Scaling via

scene geometry resulted in severely worse pose trajectories for

the unfiltered case, although the same observations were made:

with our method, there were fewer points placed within the

empty space between the refracted object and the plane. This

is an important difference since the absence of information is

treated very differently from incorrect information in robotics.

For example, estimated refracted points might incorrectly fill

an occupancy map, preventing a robot from grasping refractive

objects.

VI. CONCLUSIONS

In this paper, we proposed a method to distinguish refracted

features based on a planar fit in 4D and slope consistency. To

achieve this, we introduced a novel textural cross-correlation

technique to extract feature curves from the 4D LF. Our

approach demonstrated higher detection and lower failure rates

than previous work for LF camera arrays, and extended the

detection capability to lenslet-based LF cameras. For these

cameras, slope consistency proved to be a much stronger in-

dicator of distortion than planar consistency. This is appealing

for mobile robot applications, such as domestic robots that

are limited in size and mass, but will have to navigate and

eventually interact with refractive objects. Future work will

relate feature slopes to surface curvature to aid grasping.

It is important to note that while we have developed a

set of criteria for refracted features in the LF, these criteria

are not necessarily limited to refracted features. Depending

on the surface, specular reflections may appear as non-linear.

Such features are typically undesirable, and so we retain

features that are strongly Lambertian, and thus good candidates

for matching, which ultimately leads to more robust robot

performance in the presence of refractive objects.

In our experiments, we have shown that our method can

exclude refracted features in a scene containing spherical and

cylindrical objects; however, it is likely that not all planar

objects, such as windows, would be detected by our method.

Some types of glass with a consistent refractive index may not

be detected by our method because they do not significantly

distort the LF by design. However, features that pass through

curved surfaces or inconsistent refractive indexes, such as

those commonly seen through privacy glass and stained glass

windows, should be detected based on the nonlinearities

created by the distortions of the object.

Finally, in this paper, we explored the effect of removing

the refractive content from the scene. We demonstrated that

rejecting refracted features for monocular SfM yields lower

reprojection errors and more accurate pose estimates. In future

work, we plan to exploit the refractive content for robot motion

and refractive shape recovery.
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