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Refractive Light-Field Features for Curved

Transparent Objects in Structure from Motion

Dorian Tsai1, Peter Corke1, Thierry Peynot1, Donald G. Dansereau2

Abstract—Curved refractive objects are common in the human
environment, and have a complex visual appearance that can
cause robotic vision algorithms to fail. Light-field cameras allow
us to address this challenge by capturing the view-dependent
appearance of such objects in a single exposure. We propose a
novel image feature for light fields that detects and describes the
patterns of light refracted through curved transparent objects.
We derive characteristic points based on these features allowing
them to be used in place of conventional 2D features. Using
our features, we demonstrate improved structure-from-motion
performance in challenging scenes containing refractive objects,
including quantitative evaluations that show improved camera
pose estimates and 3D reconstructions. Additionally, our methods
converge 15-35% more frequently than the state-of-the-art. Our
method is a critical step towards allowing robots to operate
around refractive objects, with applications in manufacturing,
quality assurance, pick-and-place, and domestic robots working
with acrylic, glass and other transparent materials.

Index Terms—Computer Vision for Automation; Visual-Based
Navigation; Computational Imaging; Light Fields

I. INTRODUCTION

REFRACTIVE OBJECTS are often found in urban set-

tings and industrial applications. However, many robotic

vision algorithms find these objects particularly difficult to

perceive. Assuming a Lambertian surface—that the appearance

of a point on an object does not change with viewpoint—is

common, but refractive objects violate this assumption. Their

appearance from a particular camera pose is a distorted view

of the scene behind them. Thus points on the object’s surface

can change dramatically in appearance with small changes in

viewpoint. Consequently, robotic vision algorithms, including

most approaches to structure-from-motion (SfM) and simul-

taneous localisation and mapping (SLAM), perform poorly

around refractive objects. These algorithms yield incorrect

camera trajectories and 3D shape estimates and sometimes

fail to converge [1]–[3].

We propose a new feature detector for light field (LF) cam-

eras that allows existing feature-based algorithms to operate

in scenes dominated by refractive objects. Image features are
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Fig. 1. Comparison of conventional and proposed image features: (top) a
robot-mounted LF camera moves horizontally while observing an acrylic
cylinder; (left) as seen by the camera’s first central view, 2D SIFT features’
apparent motion (green) between two frames (from red to blue) is inconsistent
across the scene, due to distortion through the refractive object (causing the
vertical shift in the refracted image features); (right) the proposed feature
exhibits consistent apparent motion (green) between views (only exhibiting
horizontal image feature motion), enabling structure-from-motion to operate
correctly. The proposed approach yields two characteristic points for refracted
features, simplifying to a single point for Lambertian features.

distinct points of interest that can be repeatedly and reliably

identified from different viewpoints. These form the basis for

a range of robotic perception tasks including visual odometry

and 3D reconstruction via SfM and SLAM [4], [5]. When

image features are visible through a refractive object they

exhibit apparent motion inconsistent with the scene geometry

and camera trajectory, as seen in Fig. 1. We refer to these as

refracted image features. Their view-dependent nature violates

assumptions that underpin conventional vision algorithms,

which can prevent them from operating as intended [1], [2].

LF cameras capture dense and uniformly-sampled multiple

views of the scene in one exposure [2], [6]. A single LF

image describes view-dependent effects such as occlusion,

specular reflection, and notably, refraction. We exploit this in

the context of SfM, toward more reliable operation around

refractive objects, such as an eye-in-hand robot grasping a

transparent wine glass. We detect refracted image features

based on the patterns of light passing through curved refractive
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objects. From these we extract characteristic points with more

consistent apparent motion. We show these can directly enable

feature-based algorithms like SfM to operate around refractive

objects.

Previous work has shown LF capture offers advantages

in detecting reliable features [7] and ignoring refracted fea-

tures [2]. None has to our knowledge described the detec-

tion and use of refracted features for robotic applications.

We propose a novel feature detector for refractive objects:

the refracted light field feature (RLFF). While conventional

features identify patterns in the geometry or texture of objects,

the RLFF considers the structure of light refracted by refractive

objects, finding characteristic points in the free space between

objects.

Our key contributions are:

• we describe a new kind of feature, the RLFF, that exists

in the patterns of light refracted through objects;

• we propose efficient methods for detecting and extracting

RLFF features from LF imagery, and for describing them

in terms of characteristic points that can be employed in

place of conventional features like SIFT; and

• we demonstrate that using RLFFs improves SfM perfor-

mance in scenes dominated by refractive objects, yielding

more accurate camera trajectory estimates, 3D reconstruc-

tions, and more robust convergence, even in complex

scenes where state-of-the-art methods otherwise fail.

To evaluate the RLFFs we captured LF imagery us-

ing a Lytro Illum camera mounted on a robotic arm. We

captured 218 LFs of 20 challenging scenes containing a

variety of refractive and Lambertian objects. The dataset

and code associated with this paper can be accessed at

https://tinyurl.com/rlff2021.

Limitations: This work is inspired chiefly by applications

dominated by smooth curved objects like drinking glasses

and other manufactured transparent items. Evaluation with

flat refractive objects is limited, and we expect adaptation

of the method may be required. As with any feature-based

method, the presence of texture is required for the algorithm to

work. In particular, RLFFs only occur when texture is visible

through a refractive object. The approach here will therefore

not work with frosted or very complex surfaces through which

scene content is not visible. We also assume a geometric

ray-based optics approach, so strong defocus effects through

highly distorting objects are not considered.

The rest of this paper is organised as follows. We review re-

lated work in Section II. In Section III, we discuss the optics of

the lens elements that inform the behaviour of our RLFF. Next,

the formulation and extraction of our RLFF are described in

Section IV. Experimental results using our features in SfM and

comparison to traditional 2D SIFT features are presented and

discussed in Section V. Lastly, in Section VI, we conclude the

paper and explore avenues for future work.

II. RELATED WORK

A variety of approaches for detecting and reconstructing

refractive objects using vision have been considered in previ-

ous work [1], [8]; however, many require known light sources

with bulky configurations that make them impractical for

mobile robotics. Other vision-based methods allow for robotic

manipulation of refractive objects [9], [10]; however, they rely

on having a 3D model of the object a priori. Complete and

accurate 3D models and refractive indices of such objects

are often difficult, time-consuming and expensive to obtain,

or simply not available [1]. When such information is not

available, localisation, manipulation and control of and around

refractive objects become much harder.

Recently, using LF cameras for SfM has been explored [11],

[12]. However, these methods employ conventional 2D image

features that occur on 3D surfaces. In this paper, we propose

a novel 4D feature that is defined by patterns of light that are

not necessarily fixed to the surface of an object.

For LF-specific features, Tosic et al. developed a type of

LF-edge feature [13]; however, our interest is in keypoint

features, which tend to be more uniquely identifiable, and

are more commonly applied to visual servoing and SfM

tasks. Tsai et al. developed the first LF image-based visual

servoing algorithm that uses a feature combining central-

view image coordinates and depth-dependent LF slope [14].

Teixeira et al. used epipolar planar images (EPIs) to detect re-

liable Lambertian image features [15]. Similarly, Dansereau et

al. proposed the Light-Field Feature (LiFF) [7], which focused

on detecting and describing reliable Lambertian image features

in a scale-invariant manner. However, all of these LF features

were designed for Lambertian scenes. We show in the case of

LiFF, its performance is affected by the same issues SIFT has

with inconsistent apparent feature motion, making it unsuitable

for describing refracted image features.

LFs have been considered for refractive object recogni-

tion. Maeno et al. proposed an LF distortion feature (LFD),

which modelled an object’s refraction pattern as image dis-

tortion [16]. However, the authors observed poor recognition

performance due to specular reflections and changes in camera

pose. Xu et al. used the LFD as a basis for refractive object

image segmentation [3]. Corresponding image features from

all views in the LF were fitted to the single normal of a 4D

hyperplane using singular value decomposition (SVD). Tsai et

al. extended this work to show that a 3D point manifests as a

plane in 4D that has two orthogonal normal vectors, which

yielded more accurate estimates of how closely an image

feature follows the Lambertian model. These estimates helped

distinguish more types of refractive objects with a higher rate

of detection in order to reject refracted scene content [2].

In this paper, we propose a novel RLFF based on the

appearance of background texture through a refractive object.

We extend [2] to derive novel methods for detecting, extracting

and estimating the 4D structure of an RLFF in the LF. We use

the full LF to detect and extract each feature, making maximal

use of available information. We employ the proposed RLFF

to allow SfM to operate in scenes dominated by refractive

objects. Notably, while prior work in [2] focused on detecting

and rejecting the refracted scene content, our approach directly

uses both the Lambertian and refracted scene content for more

reliable camera pose and 3D shape estimation.
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III. DESCRIBING REFRACTIVE OBJECTS

We want to understand the visual appearance of background

points imaged through refractive objects, so that we can

locally approximate the surface of a refractive object as an

astigmatic lens. We begin by investigating the behaviour of

light as it travels from the background texture and enters

the object. Where the light intersects with the object, the

object’s local surface curvature determines its path, just as

in the case of the surface of a lens. We can describe the

entire refractive object as a collection of surface patches, each

distorting light based on its local curvature. Fig. 2 illustrates

this concept for a toric refractive object, a specific case of

an astigmatic refractive object. Here we highlight part of the

torus’ surface that has a local shape well described by two

orthogonal axes of curvature, each with a corresponding radius

of curvature. In the general case of an asymmetric surface, the

axes of curvature need not be orthogonal, and the result is an

astigmatic surface [17]. We can therefore locally approximate

the surface of a refractive object as an astigmatic surface.

Other common optical surfaces can be described as special

cases of the astigmatic surface. A spherical surface has two

identical radii of curvature, and focuses a point source of light

to a single point. A cylindrical surface has an infinite radius

of curvature in one direction, and focuses a point to a line.

As light leaves the refractive object, it encounters a second

surface and is again distorted. As with the first surface, the

behaviour is determined by the local curvature of the object.

In the general case in which both entrance and exit surfaces

are astigmatic, their combined effect is to behave like an

astigmatic lens [17].

Fig. 3 depicts the image of a point as seen through a

general astigmatic lens. Note there are two focal lines at

distinct depths C1 and C2. The shape of the bundle of rays

passing through the astigmatic lens is known as an astigmatic

pencil. Mathematician Jacques Sturm (1838) investigated the

properties of the astigmatic pencil, and it is thus also known

as Sturm’s conoid [17]. The shortest line segment connecting

the two focal lines is known as the interval of Sturm, ζ.

As a line segment, ζ can be described by two 3D points.

These points have the desirable properties that they can be

observed from different positions in the scene, they do not

shift significantly as a function of viewpoint, and they can

be estimated from a single LF image. They do not shift

significantly with viewpoint because the locations of the focal

lines are fixed, independent of viewing angle. These will

therefore form the basis for our RLFF. Though our discussion

is concerned with points, generalisation to more complex

textural shapes, and in particular the corners or blobs that make

up conventional image features, is straightforward.

IV. REFRACTED LIGHT FIELD FEATURES

Whereas a conventional 2D image feature is defined by a

single location in space, e.g., the position of a textural corner

or centroid of a blob, the RLFF is more complex, defined by

ζ, depicted in Fig. 3. This section describes our method for

detecting and estimating the RLFF from a single LF exposure.

(a) (b)

Fig. 2. A complex refractive object can be described in terms of the local
curvature of small surface patches. (a) The surface of a torus with radii R1

and R2 is sliced (dashed red) to form a toric lens surface; (b) The lens surface
is defined by two local radii of curvature, and will focus light to focal lines
at two distinct focal depths. For the more general astigmatic surface, the axes
of curvature need not be orthogonal.

interval of Sturm

astigmatic lens

Fig. 3. A point P imaged through an astigmatic lens (blue) forms a distorted
pencil of rays. Two lines of focus (purple and cyan) form at depths C1 and
C2, and the shortest line connecting these is the interval of Sturm (red). The
two 3D points C1 and C2 that describe the interval of Sturm that comprise
our RLFF are shown (yellow/black circles). Observing the scene with an LF
camera, we can estimate the orientations of the focal lines and the endpoints
of the interval of Sturm. These phenomena are stable with respect to camera
pose, and form the basis for our proposed refractive feature.

We parameterise the LF using the relative two-plane param-

eterisation [6]. A light ray φ has coordinates φ = [s, t, u, v]T ,

where s, t and u, v describe the points of intersection with two

reference planes separated by an arbitrary distance D, s, t are

chosen to be further from the scene as depicted in Figs. 3, 4,

and T is the vector transpose. In the relative parameterisation,

u, v are expressed relative to s, t. In the sampled LF, we

employ the discrete variables i, j, k, l, where i, j select a sub-

image, and k, l select a pixel from that image.

(a) (b)

Fig. 4. (a) Geometry of the point-plane correspondence: in a slice of the
scene, a Lambertian point P manifests as a line in s, u with slope inversely
proportional to Pz [18]; the same holds in the t, v dimensions yielding a plane
in the 4D LF (1). (b) Imaging the point through an axis-aligned astigmatic
lens, in a single slice of the LF, P manifests as a focal line going into the
page at C, yielding a line in s, u-space. In a similar slice (not shown), P
appears as a second focal line at a different depth (see Fig. 3), yielding a
line at a different slope in t, v-space; the net result is again a plane, but with
unequal slopes for the two slices (2).
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A. Feature Detector and Descriptor

Our goal is to exploit the local 4D structures of light

refracted through objects to define a unique feature detector

and descriptor, and in so doing identify and extract the

refractive feature parameters. Thus, we leverage existing 2D

tools to detect and describe RLFF features. In an approach

similar to [11], we apply a SIFT detector to each sub-image

of the LF, and match these between views. We use Root SIFT

descriptors applied to the central sub-image of the 2D feature

for more reliable matching [19], and match between LF sub-

images based on the Euclidean distance between descriptors.

Only allowing features that match across a minimum number

of sub-images allows us to reject spurious detections. In future

work, we envision extending a direct LF feature detector like

LiFF, which detects features by simultaneously using the entire

LF [7].

The detection process yields a set of discrete-space obser-

vations n, each of the form ni = [i, j, k, l]T corresponding

to the centroid of the detected SIFT feature k, l in each sub-

image i, j. This approach works in the presence of refractive

features because, although textural blobs have distorted appar-

ent motion in the LF, their appearance is very similar across

the LF sub-images, particularly for small-baseline cameras like

the hand-held Lytro employed in this work.

Next, to effectively estimate ζ and extract the feature’s

parameters, we require the sub-images observing the feature to

have sufficient diversity. Views must subtend a 2D space. To

evaluate view diversity, we use the coefficient of determination

R2 of a line of best fit from the s, t coordinates of matching

views. High R2 corresponds to a mostly linear set of views,

and we empirically determined R2 > 0.65 to be a suitable

criterion for rejection.

B. Feature Extraction

In this section we describe the process of estimating RLFF

parameters. Feature detection yields a set of discrete space

observations ni. For extraction, we first calibrate the camera to

yield an LF intrinsic matrix [20] to convert ni to a continuous-

domain ray φi = [s, t, u, v]T .

In the case of a Lambertian scene point, it is well established

that the set of observations φ will lie on a plane in the 4D light

field [18]. The geometry for this point-plane correspondence

is depicted in Fig. 4a, and is given by
[

u
v

]

=
(

− D
Pz

)

[

s− Px

t− Py

]

, (1)

where P = (Px, Py, Pz) is the position for a Lambertian point

P with respect to the LF camera’s nodal point. This can be

interpreted as the intersection of two hyperplanes, where the

slopes of the hyperplanes in the epipolar plane dimensions s, u
and t, v are identical, given by −D/Pz .

We now generalise the point-plane correspondence by in-

troducing an astigmatic lens between the camera and the

Lambertian point, as depicted in Fig. 4b. We initially assume

a thin toric lens with axes aligned with the s and t axes. This

yields two orthogonal lines of focus at depths Pz1, Pz2. In s, u
the behaviour is similar to that of a Lambertian point at depth

Pz1, whereas in t, v the rays appear to emerge from a point

at depth Pz2. We can write this more formally as
[

u
v

]

=S

[

s− Px

t− Py

]

, S =

[

−D/Pz1 0
0 −D/Pz2

]

, (2)

where Pz1 and Pz2 are apparent depths corresponding to the

extremities of ζ, and S is a diagonal matrix of the two slopes

for the RLFF.

For the more general case of non-camera-aligned lines of

focus, i.e., the case of a general astigmatic lens, we apply a

transformation H of the form
[

u
v

]

=H

[

s− Px

t− Py

]

, H = V SV -1, (3)

where V is a rotation matrix for the special case of a rotated

toric lenses, and the concatenation of two potentially non-

orthogonal axes [V1, V2] for a general astigmatic lens. This

transformation assumes ζ is close to parallel with the principal

axis of the camera. For very wide-Field-of-View (FOV) LF

cameras, features near the edges of images can violate this

assumption, resulting in poor feature detection rates. However,

for the Lytro cameras and the imaging scenarios considered

here, this assumption holds well across the entire FOV.

Finally, separating the translation terms yields the gener-

alised point-plane correspondence for points imaged through

astigmatic lenses
[

u
v

]

=H

[

s
t

]

+X, X = −H

[

Px

Py

]

. (4)

Note that this general form also describes the Lambertian case,

for which the depth Pz1 equals Pz2 and (4) reduces to (1).

C. Estimating Feature Parameters from Observations

From (4), observations of a scene point take the form

[

u
v

]

=

[

h1 h2 x1

h3 h4 x2

]





s
t
1



 , (5)

where h1 . . . h4 are the elements of H , and X = [x1, x2]
T .

Given a set of [s, t, u, v]T observations for a single feature, we

find the least squares solution to (5), directly yielding estimates

Ĥ and X̂ .

Eigenvalue decomposition of Ĥ allows us to estimate V
and S following (3). Equating terms from (2)–(4) allows us to

solve for Px, Py, Pz1, Pz2 as well as the directions of the axes

V1 and V2, θ1 and θ2, respectively. These are the parameters

of the focal lines caused by an astigmatic lens and ζ. These

six parameters also compose our definition of the Refracted

Light Field Feature (RLFF):

RLFF =
[

Px, Py, Pz1, Pz2, θ1, θ2
]T

. (6)

Though physically realisable H matrices are symmetric, the

estimate Ĥ may not be. Asymmetric matrices can result in

imaginary eigenvalues. Prior to eigendecomposition we force

Ĥ to be symmetric, ĤS = (Ĥ + ĤT )/2. We note that

using a constrained least squares estimator would likely yield

improved noise performance. Eigenvalue decomposition on Ĥs

yields V and S. When estimating the offsets, Px and Py ,
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we use the reconstructed HR = V SV -1 rather than Ĥ , as

this improves noise performance. The residual between Ĥ and

HR forms a convenient indicator for outlier features not well

described by our assumptions.

An example of a feature extracted from captured LF imagery

is shown in Fig. 5. The sub-image views are shown in blue, the

set of s, t, u, v observations across the LF are shown in gray,

and the estimated focal lines and ζ are shown as coloured line

segments.

D. Driving SfM

The proposed feature definition comprises two infinite lines

of focus and the interval between them. We anticipate con-

structing robotic vision algorithms that work directly off these

features. However, existing systems like the popular SfM

solution COLMAP [5] accept only 2D image features like

SIFT. Thus, we propose two mechanisms for driving existing

vision systems with the proposed feature for comparison with

monocular- and stereo-based SfM approaches.

First, by projecting the 3D endpoints of ζ into the central

view of the camera, they are reduced to 2D image features.

This RLFF mono has the drawback of discarding all 3D

information associated with the feature. Second, we therefore

propose a variation of this approach in which we instead

project the same endpoints into two separate LF views, sep-

arated by a baseline similar to that of the LF camera. This

RLFF stereo preserves most of the 3D information of the

feature, discarding only the orientations of the focal lines.

This also preserves our knowledge of the baseline over which

depth is being estimated, an important detail for reconstruction

algorithms that consider uncertainty associated with short-

baseline depth estimates. We evaluate both variations of this

approach in Section V.

Note that our approach simultaneously detects both Lam-

bertian and refracted features, and passes them all into SfM.

In theory, Lambertian scene points yield a zero-length ζ, and

so appear as a single point rather than as a pair. This is

visible in our results, e.g., see the refracted and background

Lambertian features in Fig. 1. Many applications will ben-

efit by distinguishing Lambertian and refracted features, as

Lambertian points generally correspond to an object’s surface,

while refracted features are images that exist in free space.

Prior work has distinguished refracted features on the basis

of slope differences in 3D subsets of the LF [2]. The RLFF

effectively measures how Lambertian an image feature is in a

more complete way, as the entire LF is employed. ζ has zero

length for Lambertian scene points, and only takes on finite

extent for refracted scene content. Otsu’s method can be used

to determine a suitable threshold when considering a histogram

of ζ distances. However, some Lambertian features have a non-

zero ζ in Fig. 1. We attribute this to the RLFF having more

degrees of freedom than a simple Lambertian feature. The

RLFF may be more susceptible to modelling errors, such as

miscalibration. Thus, replacing SIFT for RLFF in Lambertian

scenes, which is not proposed in this paper, requires deeper

investigation into this phenomenon.

Note also that in the case of refracted features, we are

passing two characteristic points to COLMAP as though they

uv plane

st plane

interval of Sturm

focal line 2

focal line 1

refracted light 

field feature

central ray

Fig. 5. An RLFF extracted from Illum imagery. The st sub-images (blue)
and uv observations (green) are shown from distance D = 0.1m from the
st-plane. The rays projected by stuv (grey) pass through both the first and
second focal lines (cyan and magenta, respectively). The central ray of the
feature is shown (dashed black). ζ (red), and the two 3D points (yellow) define
our RLFF.

were separate 2D features. We require a descriptor for each

of these to allow feature matching, but wish to disallow

matching of front and back characteristic points C1 and C2

between frames. To this end we propose three approaches.

First, the descriptor can be modified to reflect which focal

line it belongs to, front or back, e.g., through addition of a

bias term, scaling factor, of by raising to some power. Then

matches could not occur between front and back features as

their descriptors differ substantially. Second, one can perform

matching externally to the SfM tool while keeping track of

which characteristic point each feature corresponds to. Then

potential matches between front and back points are simply not

evaluated. Finally, the approach taken in this work is to employ

identical descriptors for the two points, yielding extraneous

putative matches, and relying on outlier detection to reject

these on the basis of epipolar geometry.

V. EVALUATION

To evaluate the proposed feature we mounted an Illum LF

camera on a Franka Emika Panda robot arm. The experimental

setup is illustrated in Fig. 1. The LF camera was calibrated

using the LF Toolbox [20]. To reduce the effect of extreme lens

distortion, we cropped the 15×15 LF to a 13×13 array of sub-

images. The robot arm was used for repeatability and ground

truth trajectories with sub-millimeter positional accuracy. We

used a variety of refractive objects, such as a water bottle,

glass sphere, glass cups filled with water, combined with a

variety of textured backgrounds.

A. Structure from Motion

To evaluate the RLFF, we used the popular COLMAP

SfM implementation [5]. Following the procedure outlined in

Section IV-D, we converted each detected RLFF to a pair of

2D image features, as seen from the central view of the LF

camera (the middle view of a LF if we consider the LF as

a grid of views). We also evaluated the alternative approach

of projecting the feature into a stereo pair of LF views,

preserving depth information. For comparison, we evaluated

SIFT features as seen in the central LF view. To better

understand the impact of projecting features into stereo pairs,
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Fig. 6. Three example scenes for which COLMAP fails when using SIFT
features (left) but succeeds when using the proposed RLFF. These examples
also show different types of camera motion: the wine glass has forwards
motion, the sphere has horizontal motion, and the cylinder has both. Only
the first central view image is shown with red features with green feature
motion to corresponding blue features of a subsequent image. RLFF show
some inconsistent apparent motion near the edges of the refractive objects;
however their motion is more consistent than SIFT, allowing COLMAP to
converge.

we also compared with SIFT similarly projected into a pair of

LF views, with the same baseline as for the RLFF test.

We also considered LiFF features. In an evaluation similar

to that shown in Fig. 1, Fig. 7 shows the LiFF feature matches

between two poses. Fewer refracted features were detected

than SIFT, but LiFF demonstrated the same inconsistent fea-

ture motion exhibited by SIFT, making it unsuitable for use

around refractive objects.

In all, we compared four methods using COLMAP, covering

the proposed RLFF and SIFT for both monocular and stereo

views: RLFF mono, RLFF stereo, SIFT mono and SIFT stereo.

We evaluated performance using COLMAP’s sparse SfM.

SfM was not able to reconstruct all scenes for all types of

objects, as its solution did not always converge. This was espe-

cially problematic for scenes dominated by refracted content.

Following [7] and [5], we evaluated performance in terms of

the percentage of scenes for which COLMAP converged, the

number of image features per image, putative image feature

matches per image, inlier matches per image during SfM,

putative match ratio, mean number of 3D points, track length,

precision and matching score. The putative match ratio is the

proportion of detected image features that yielded putative

matches. The mean number of 3D points in the reconstructed

models serves as an indicator of how many features were

stable enough to be included into the model. The track length

is the mean number of camera poses over which a feature

was successfully tracked. The precision is the proportion of

LiFF features

inconsistent

feature

motion

Fig. 7. Like the SIFT features shown in Fig. 1, LiFF shows inconsistent
feature motion around refractive objects, resulting in poor reconstructions.
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Fig. 8. Cumulative histogram of imagery successfully incorporated into the
COLMAP SfM model (as a percent of 218 LFs) versus the refracted feature
ratio r. For r > 0.4, imagery becomes increasingly challenging as more of
image features become refracted and fewer images are being incorporated by
each SfM solution, especially for SIFT. An ideal method would incorporate
all images with a percent of images less than r (green), ending with a value
of 100%, being able to incorporate all of the refracted scene imagery. Our
RLFF-based SfM reconstructs more images in total, showing the strongest
advantage with more refracted content.

putative image feature matches that yielded inlier matches. The

matching score is the proportion of image features that yielded

inlier matches. Note that for the RLFF features, we divided the

number of image features, putative matches, inlier matches and

3D points by two because a single RLFF is represented by a

pair of points, the extents of ζ. Similarly, we divided the track

length by two for both stereo approaches, as twice the number

of images were considered during the motion sequences.

We collected 20 sequences consisting of 10 to 20 camera

poses each, covering a variety of motion trajectories and a di-

verse set of scene content including spherical, cylindrical, and

general astigmatic elements. The experimental setup shown

in Fig. 1. The dataset contains 218 LFs in total. Example

images highlighting the differences between SIFT and RLFF

performance are shown in Fig. 6. In all of these scenes

COLMAP was unable to converge while using either version

of SIFT, but succeeded when using our RLFF.

To understand how refractive objects affect SfM perfor-

mance, we evaluated the extent to which each LF is dominated

by refractive features. We took the extent of ζ for each feature

as an indication of how Lambertian it is. Lambertian scene

points evaluated by our feature extractor yield a ζ of zero

length, or equivalently, correspond to a plane with equal slopes

in horizontal and vertical dimensions following (1).

A limitation of this approach is that it does not work

for spherical lenses, which produce a well-formed image

that behaves identically to Lambertian scene content. Human

viewers are also susceptible to this, and it is the basis for

some display technologies that produce images floating in air.

Features refracted through spherical objects are thus not well
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TABLE I
EVALUATING THE PROPOSED RLFF AND SIFT IN SFM, BOTH IN MONOCULAR AND STEREO MODES. MORE SCENES CONVERGE

USING THE PROPOSED METHOD, AND IT OUTPERFORMS THE STATE-OF-THE-ART IN ALL MEASURES EXCEPT PRECISION.

Methods # LFs % # LFs Image Putative Inlier Putative 3D Track Precision Matching

converged Pass common Features Matches Matches Match Points Length Score

/ Img / Img / Img Ratio

SIFT MONO 158 0.75 118 372 122 112 0.369 431 5.11 0.916 0.340

SIFT STEREO 128 0.6 118 370 131 122 0.369 524 4.16 0.922 0.342

RLFF MONO 208 0.95 118 321 155 134 0.448 437 5.27 0.842 0.385

RLFF STEREO 198 0.9 118 321 168 147 0.487 684 4.04 0.863 0.426
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Fig. 9. Comparing pose accuracy for horizontal camera motion, as in Fig. 1:
(a) Estimated trajectories show both proposed stereo and mono variants
of RLFF outperforming both variants of SIFT; (b) Relative, instantaneous
translational and (c) rotational error show the proposed methods outperforming
SIFT in all cases.

detected by our method. They do, however, make excellent

points for use in SfM, so while we do not detect them as

being refracted, we do make use of them in the SfM solution.

We plotted the number of images correctly incorporated

into an SfM solution by COLMAP. By sorting images on the

horizontal axis according to the number of features identified

as refractive over the total number of features per image, the

refracted feature ratio, r, we obtain the cumulative histogram

shown in Fig. 8. This shows both variants of the proposed

method enabled SfM to succeed with almost all images, while

the SIFT-based methods failed to converge for a significant

number. Importantly, the difference in performance is due

chiefly to scenes dominated by refracted content.

Finally, occluding edges remain an issue for RLFF, which

exhibits some inconsistent apparent motion near the edges

of the refractive objects in Fig. 6. This is likely because a

support region at an occlusion boundary contains multiple

depths, causing inconsistent depth estimates, though recent

work focused on distinguishing these edges is promising [21].

B. 3D Reconstruction Performance

We ran COLMAP across all of the collected scenes, and

summarise the results in Table I. The statistics show that

RLFF methods have a higher proportion of putative and inlier

matches, the number of 3D points in the reconstructions, the

track length, and the overall matching score. Our methods

converged 15-35% more frequently than their SIFT coun-

terparts, and performed better in almost all measures except

precision. The stereo version of RLFF generally showed higher

performance, though the monocular version allowed more

scenes to converge. We explain weaker precision performance

of RLFF by noting more putative matches due to doubling the

number of 2D image features, which subsequently quadrupled

the number of potential 2D feature matches. In this prelim-

inary work, descriptors were only duplicated for the RLFF

projections to 2D image features. For refracted image features,

the distance between feature projections was sufficiently large

to discriminate. However, for Lambertian features where the

projections are coincident, we increased the putative matches

without increasing the inliers. This resulted in lower precision.

To prevent this issue, we can adopt the strategies proposed

earlier in Sec. IV-D for future work. These results showed

that the proposed RLFF feature allowed COLMAP to operate

in many scenes for which it could not previously operate.

C. Camera Trajectory Estimation

We also evaluated the accuracy of camera trajectories esti-

mated by SfM. Ground truth was available by virtue of our use

of a robotic arm to carry out the camera trajectories. A com-

parison of camera trajectory estimates and their corresponding

translational and rotation error are shown in Fig. 9. For this

scene, the proposed RLFF feature showed substantially higher

performance in both rotational and translational error, yielding

a much more accurate trajectory estimate.

Table II summarises SfM pose accuracy over all the test

scenes, shown in terms of the instantaneous pose error

ei = |(ps,i−ps,i−1)−(pg,i−pg,i−1)| for image i in translation

(etr[mm]) and rotation (erot[deg]), averaged over the entire

sequence of images, where ps,i and pg,i are the estimated pose

and groundtruth pose for image i, respectively. We compared

the same four variants of SIFT and RLFF-based approaches as

before. We separated scenes for which all methods converged,

condensing 11 scenes into averages in the top half of the table,

but noting that these correspond to the easiest scenes with a

median r of 0.35. In contrast, the more challenging scenes

where a refractive object dominated the image, had a median



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2021

TABLE II
COMPARISON OF SFM POSE ERROR. RLFF ALLOWED ALMOST

ALL SEQUENCES TO CONVERGE, WHILE SIFT DID NOT. RLFF
OUTPERFORMED SIFT BOTH ON EASIER SEQUENCES WHERE ALL

METHODS CONVERGED (TOP), AND IN MORE CHALLENGING

SEQUENCES (BOTTOM), DIFFERENTIATED VIA THEIR MEAN

REFRACTED FEATURE RATIO, r.

SIFT SIFT RLFF RLFF

MONO STEREO MONO STEREO

Seq. #LFs r etr erot etr erot etr erot etr erot

All Converged

Mean 118 0.34 5.69 2.08 5.27 1.49 3.31 0.42 4.00 0.92

Median 118 0.35 2.21 0.97 2.97 0.53 2.36 0.30 2.38 0.34

Not All Converged

1 10 0.46 7.24 2.85 7.90 3.01 1.87 1.33 - -

2 10 0.69 1.54 0.26 - - - - - -

3 10 0.45 7.13 1.23 - - 14.70 0.48 1.87 0.16

4 10 0.47 2.30 0.62 - - 1.75 0.36 2.65 0.50

5 10 0.62 - - - - 1.19 0.45 1.31 0.34

6 20 0.50 - - - - 1.39 0.19 1.15 0.15

7 10 0.45 - - - - 3.27 0.36 2.09 0.27

8 10 0.46 - - - - 3.14 0.38 1.99 0.29

9 10 0.46 - - - - 2.66 0.33 2.01 0.29

Mean - 0.51 4.55 1.24 7.90 3.01 3.75 0.48 1.87 0.29

Median - 0.46 4.72 0.95 7.90 3.01 2.26 0.37 1.99 0.29

r of 0.46. This corroborates Fig. 8, where SIFT’s converged

image count drops near r = 0.4. In all, the monocular variant

of RLFF showed slightly stronger performance (lower error)

for these easier scenes; whereas, the stereo version performed

better for the more challenging scenes, in which at least one

method failed to converge. The cases where RLFF failed to

converge both involved low feature counts for scenes at the

occluding boundaries of the refractive objects, which is a

known limitation of the image-based features.

In sum, Table II shows our methods outperforming SIFT-

based methods, and importantly, the proposed method con-

verged in all scenes but one (mono) or two (stereo), while the

SIFT-based methods failed to converge for five (mono) or eight

(stereo). The proposed method allows SfM to operate in scenes

where it previously could not, and it improves performance

in camera pose estimation wherever these is refracted scene

content, even for less challenging scenes.

VI. CONCLUSIONS

We proposed a novel 4D feature defined by the rays of

light travelling through curved refractive objects, as opposed

to the conventional 2D image features defined by a single

3D point in space. Advantageously, our feature captures both

Lambertian points and features imaged through smooth re-

fractive objects. We demonstrated methods for detecting and

extracting the proposed RLFF from LF imagery captured by a

hand-held LF camera, and for employing the resulting features

in conventional vision algorithms including SfM. Finally, we

evaluated RLFF’s benefits in the context of SfM, comparing

to conventional SIFT-based methods. We showed the proposed

method allowed SfM to operate where it previously could not.

We also show improved 3D reconstruction performance and

3D camera trajectory estimation. Our method is especially

advantageous in scenes with over 46% refracted features, in

which traditional approaches fail.

We intend to develop a feature that directly employs the

local 4D structure of refracted features, as in the LiFF feature

for Lambertian LFs [7]. Demonstrating RLFF in more scenar-

ios is also of interest, including closed-loop control for visual

servoing, and place recognition for localisation and SLAM.

More complex and thicker refractive objects may be addressed

by adopting the thick lens model or similar optics theory.

Finally, it is well understood that reflection off smooth curved

surfaces exhibits characteristics similar to refraction through

transparent objects (multiple observable depths for a single

feature). We expect generalisation of the RLFF to reflective

scenes to be straightforward and to show similar performance

advantages as in the refractive case.
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