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ABSTRACT
Recovering information from contrast-limited, SNR-limited,
color-attenuated images in a scattering media is of paramount
importance for the autonomous functioning of robotic agents.
The task is challenging due to the transient state of the
medium, unknown medium parameters and in many cases
the need for fully autonomous operation. This work presents
a target-less, calibration-less method for restoring underwa-
ter light field images and requires no explicit model of the
medium. The method adopts a light-field imaging approach
to capture, model and compensate for backscatter in the scene
leading to the recovery of high-fidelity images. The proposed
method for backscatter compensation is validated against
other state-of-the-art methods and is demonstrated to yield
superior image quality.

Index Terms— Image restoration, image enhancement,
scattering media, light fields, underwater imaging.

1. INTRODUCTION

Recovering high fidelity images from a scattering medium
such as rain, fog, haze, snow, etc., is a complex engineer-
ing task. Yet, it is one of timely importance owing to the in-
crease in the autonomous operation of robotic agents on land
(autonomous cars, trucks, delivery vehicles), air (drones, un-
manned aerial vehicles) and water (autonomous underwater
vehicles). These robotic agents are designed to function in
“fair-weather” conditions and the systems they depend on to
function (object-detection, collision avoidance, visual SLAM,
visual odometry, etc.,) become unreliable under harsh envi-
ronmental conditions.

Imaging in scattering media is a challenging proposition
due to a reduction in SNR owing to the particulate matter
in the medium along with a loss of image contrast - both
of which are scene depth dependent, a point driven home by
Figure 1(a). We consider highly turbid water as a scattering
medium of interest and attempt to restore images captured
in this medium (Figure 1(b)). Turbid water is an excellent
choice of study owing to the fact that light not only under-
goes absorption but also scattering, both on its way from the
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Fig. 1: (a) Representative image showing extent of degrada-
tion when imaged under turbid conditions [1]. (b) Restored
image by using the techniques presented in this paper.

illuminant to the scene (backscatter) and from the scene to
the sensor (forward scatter), imposing severe challenges to
the restoration techniques.

A recent trend in underwater imaging has been to adopt
the dark channel prior (DCP) as proposed by He et al. [2] for
aerial haze removal. In the presence of haze, application of
the DCP prior results in elimination of the direct attenuation
component enabling estimation of the transmission parame-
ter, leading to a restored image. Drews et al. [3] introduce an
underwater dark channel prior (UDCP) based on the green
and blue channels by noting that the absorption in the red
channel is significant over the imaging range and is an un-
reliable estimate of scene statistics.

Hardware based approaches such as [4], [5], [6] and [7]
require additional optical components such as multiple illumi-
nation sources or polarization filters and need to capture mul-
tiple snap-shots of the scene in order to estimate the medium
parameters. These techniques impose additional complexity
on power-limited, real-time autonomous systems which has
limited their widespread use in real-world applications.

In [1], Skinner et al. use light field cameras [8] to cap-
ture images in turbid media and restore those images using
the dehazing model of Li et al. [9]. The compact form factor
of light field cameras together with their sophisticated algo-
rithms make them a potential candidate for use in real-world
applications.

This work proposes an image restoration pipeline based
on estimating the backscatter component by utilizing the
depth selectivity afforded by light field imaging to overcome
occluders and noise. Our main contributions are:

1. A light field image restoration pipeline that is based on
backscatter elimination using adaptive depth selective



Fig. 2: The major stages of the light field image restoration pipeline. The input light field is filtered based on the depth range
of the objects in the scene generating a focussed light field frame. Each color channel of the focussed frame is processed
independently to recover the backscatter-eliminated image.

hyperfan filters.
2. A robust technique that handles high turbidity in under-

water images for a variety of object depth ranges.

Unlike existing techniques that require in-situ calibration
targets, additional components such as transmissometers or
multiple illumination sources, the proposed model is a target-
less, calibration-less method. However, the method works
best for scenes for which at least some pixels are backscatter
dominated, i.e. some parts of the frame see distant objects. It
also does not handle color dependent attenuation, which is of
lesser concern in highly turbid medium as backscatter com-
ponents dominate the image degradation process. The system
requires no additional moving components, power sources
or external optics, making it highly robust and feasible for
extended operation in challenging conditions. Further, the
model is generic enough to be extensible for aerial applica-
tions with minor modifications.

2. LIGHT FIELD IMAGE RESTORATION MODEL

The input to the model is a light field and the output is
a backscatter-eliminated, color-corrected image. Figure 2
highlights the main stages in the light field image restoration
pipeline. The input light field is swept through its depth range
to identify the depths at which one or more objects might ex-
ist. Once the depth range of an object in the scene is known,
a focussed frame is generated by using a hyperfan filter [10].
The resulting focussed image is then processed independently
per color channel to recover a backscatter-eliminated image
and finally recombined to generate a restored image.

2.1. Hyperfan volume filtering

The first stage in the pipeline achieves 4D depth filtering by
using a hyperfan volume filter along with a grey level local
variance filter as the focus measure. Unlike planar focus fil-
ters, hyperfan filters allow focusing on a range of depths while
improving SNR [10]. The true benefit of employing a volu-
metric filter like the hyperfan is its ability to see through oc-
cluders that exist over the small camera baseline.

The hyperfan (HF) filter is a volumetric depth selective
filter formed by the intersection of a dual-fan (DF) and a hy-
percone (HC) filter [10]. The passband of a hyperfan filter is
given by:

HHF (ω, θ) = HHC(ω)HDF (ω, θ) (1)

where HHC(ω) is the passband of the hypercone filter, and
is given by:

HHC(ω) = exp(−[
(ωsωv −ωtωu)

β2
HC/

√
2ln2

]2) (2)

and HDF (ω, θ) is the passband of the dual-fan filter which in
turn is formed by the superposition two 2D fan filters [11]:

HDF (ω, θ) = H2D
FAN (ωs,ωu, θ1, θ2)H

2D
FAN (ωt,ωv, θ1, θ2)

(3)
ωu,v,s,t are the continuous-domain frequency space variables
corresponding to the two-plane parameterization model. θ1
and θ2 determine the angular range of the epipolar lines and
help to select a depth-volume. βHC is the 3-dB bandwidth of



Fig. 3: (a) The input light field exists over a total depth vol-
ume from Zmin to Zmax. (b) The frequency range over which
a focussed depth volume, δZi, exists. (c) Hyperfan filtered fo-
cussed depth volume, δZi.

the hypercone passband, and determines the filter’s selectivity
to noise.

2.2. Adaptive 4D depth filtering

The object space can be considered to lie within a depth range
of Zmin and Zmax that corresponds to the angular range of
θmin and θmax in the frequency space (Figure 3). We con-
sider the entire depth range to be made up of incremental
depth-volumes each with a range δZ or equivalently δθ. Fig-
ure 3 highlights one such depth-volume, δZi (Figure 3(a)) and
its range in the frequency space ωs, ωu (or ωt, ωv), which
is, θi1, θi2 (Figure 3(b)).

We sweep the total light field depth volume from θmin

to θmax and find the grey level local variance for each incre-
mental depth volume, δθ. Grey level local variance is a focus
measure that estimates the variability in the grey level values
over a local region. This is based on the principle that when a
scene is in perfect focus, the local grey level variance will be
high as opposed to when it is out of focus [12].

The focus measure is applied to a windowed region
Ω(x, y) of size N × N pixels (15 × 15 here) centered at
(i, j). µ is the mean over the local region Ω(x, y).

φ(x, y) =
1

N2

∑
(i,j)∈Ω(x,y)

(I(i, j)− µ)2 (4)

After the sweep, the depth-volume with maximum vari-
ance is considered to be a potential candidate for the final
depth volume. For the simplest case of a planar object, the
focus curve peaks for a single δθ and the object is consid-
ered to lie within this δθ. When the object spans multiple
δθ’s the focus curve reaches its peak over multiple δθ’s and
all these δθ’s are considered to be potential candidates (Figure
2). Valid candidates are considered by thresholding the focus
curve, which gives the depth volume in which the object lies.

Once the depth volume is known, the hyperfan filter is
applied to the input light field with the known values of θi1
and θi2 to render a focussed frame.

2.3. Backscatter model estimation

Once we have the focussed frame we apply the grey level
local variance focus measure over the windowed regions of
the frame and derive a focus map (Figure 2). Higher values
of this measure indicate regions with objects in sharp focus
and lower values indicate regions with slowly varying quanti-
ties. The illumination and backscatter components are slowly
varying [13], and therefore can be detected by thresholding
the focus measure φ(x, y) by a constant value ρφ (1 × e10

here).
The success of the restoration framework depends on ac-

curately estimating the backscatter pixels and for real scenes
either a backscatter saturation assumption [7] or a dark pixel
assumption [3] can be used.

The mean of the windowed region is the estimated
backscatter value and the center coordinate is its location.

The estimated backscatter pixels are used to fit a poly-
nomial surface with second degree terms in x and third de-
gree terms in y (Equation 5), relative to the cameras’ frame
of reference. This two dimensional polynomial function has
9 unknowns (α0, α1, . . . , α8) and depends on the accurate es-
timation of at least 9 backscatter pixels. For a robust estimate
we need as many backscatter pixels as can be reliably deter-
mined and a least squares solution is employed to fit the data
to the model.

S(x, y) = α0 + α1x+ α2y + α3x
2 + α4xy + α5y

2

+ α6x
2y + α7xy

2 + α8y
3 (5)

The choice of the polynomial model depends on the sys-
tem setup, particularly on the position and quantity of the il-
lumination sources used. In principle, the backscatter term is
a slowly varying function [7] and a quadratic surface fits typ-
ical empirical data. Tsiotsios et al. [7] use a second degree
term in x and y to fit the surface model and the choice suits
well for their imaging setup.

2.4. Image restoration

The estimated backscatter function can be used to eliminate
the backscatter contribution by subtracting it from the cap-
tured image. In highly turbid media backscatter dominates
the image degradation process and even without any knowl-
edge about the attenuation coefficients lead to a good restored
image (Figure 4).

3. RESULTS AND DISCUSSION

Figure 4 compares the proposed technique with other state-
of-the-art techniques. Although DCP was not meant for
underwater image restoration, it has inspired a number of
“prior”-based restoration techniques (such as UDCP [3]) and
is shown here for completeness. Backscatter elimination
by Tsiotsios et al. [7] eliminates backscatter components



Fig. 4: Comparison of image restoration techniques. On the left are the depth ranges corresponding to the objects in the
image. Unlike other techniques that leave large backscatter residuals, the proposed technique removes most of the backscatter
component from the images and handles objects at different depth ranges.

Table 1: Spearman correlation coefficient for the red, green
and blue channels of the color board.

Red Green Blue
Input image 0.8039 0.7295 0.2341

DCP [2] 0.8526 0.7866 0.3348
UDCP [3] 0.8460 0.7535 0.1603

Tsiotsios [7] 0.8854 0.8059 0.3411
Skinner [1] 0.8971 0.8036 0.5058
Proposed 0.9407 0.8799 0.6259

that closely match the estimated second degree polynomial
model, but leaves behind residuals that do not perfectly match
the model. The light field image restoration technique from
Skinner et al. [1] reduces backscatter, but is ultimately limited
by the poor performance of its core haze removal algorithm
[9] in the presence of dense scattering.

Unlike other techniques that leave behind some backscat-
ter residuals, the proposed technique removes most of the
backscatter components from the images and handles objects
at different depth ranges.

We use the Spearman’s rank ordered correlation coef-
ficient [14] as an objective measure of restoration quality
which compares the correlation between reconstructed inten-
sities and reference intensities measured in air, which are not
affected by scattering or other degradations. We compare
the RGB values of different color swatches (red, green, blue,
black and white) of a color board imaged in air with that of
restored images from different techniques. This eliminates

the need for a perfectly co-registerd reference image which
is difficult to obtain under measurement conditions making
other metrics such as MSE, PSNR or SSIM unreliable.

For each of the color swatches in the restored color board
image we randomly select 20 pixel patches (of size 3×3)
and determine their Spearman’s correlation coefficient with
the color swatches captured in air. Table 1 shows the Spear-
man’s correlation coefficient for the different techniques for
red, green and blue color channels. As can be observed, our
technique outperforms others and is consistent with the sub-
jective results of Figure 4. Blue channel shows weak correla-
tion compared to the red and green channels and is a result of
the blue component getting scattered more compared to the
red and green components in highly turbid media [15], as is
observed consistently across all reconstructed techniques.

4. CONCLUSION

In this paper we have proposed an image restoration pipeline
for restoring light field images captured in scattering media.
The technique is based on hyperfan volume filtering and poly-
nomial backscatter elimination. By adaptively filtering the
light field volume to restrict its depth range around the object
of interest, we significantly reduce the effects of noise and
restrict backscatter components to lie within a narrow depth
range. The proposed method works well under highly turbid
conditions and comparisons with other techniques show su-
perior results. We anticipate that the proposed technique will
alleviate issues related to imaging under challenging condi-
tions and enable robust operation of autonomous vehicles.
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