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Abstract— We propose a method for intelligently selecting
images for building neural radiance fields (NeRFs) from the
large number of frames available in typical robot-mounted
cameras. Our approach iteratively constructs and queries a
NeRF to adaptively select informative frames. We demonstrate
that our approach maintains high-quality representations with
a 78% reduction in input data and reduced training time
in single-pass mapping, while preventing unbounded growth
of input frames in persistent mapping. We also demonstrate
our adaptive approach outperforming non-adaptive spatial and
temporal methods in terms of training time and rendering
quality. This work is a step towards persistent robotic NeRF-
based mapping.

I. INTRODUCTION

Simultaneous localisation and mapping (SLAM) is a crit-

ical task in robotics, requiring both accurate representation

of the environment and accurate localisation of the robotic

platform. In complex environments such as around reflective

windows or transparent doors this can be extremely chal-

lenging as view-dependent appearance causes conventional

approaches to fail. Neural radiance fields (NeRFs) [1] offer

an avenue for overcoming this challenge, as these have

demonstrated high-fidelity representation of complex visual

appearance.

There has been substantial progress in adapting NeRF to

robotic mapping [2]–[7]. However a key challenge arises in
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the volume of imagery available to a mobile robot. A single

camera can collect tens or hundreds of frames of video per

second, and the total number of frames grows indefinitely

over time for long-term deployments. To effectively leverage

neural representations it is necessary to curate this stream of

imagery, limiting on-board data and compute requirements

while maintaining the quality of the resulting models.

In this work we propose a method for adaptively selecting

NeRF input frames from a video stream. We achieve this

by iteratively constructing a NeRF-based map representation

and querying the intermediary model to judge the novelty

of new input frames. We show this approach outperforms

non-adaptive spatial and temporal frame selection techniques

by maintaining high representation quality with fewer input

frames and less training time. Our method allows a robot to

persistently survey an area without growing an unbounded

collection of input imagery.

We envision adaptive frame selection complementing pose

and model refinement as well as selective frame removal in

persistent robotic NeRF-based mapping systems.

Limitations: we do not address pose estimation in this

work, and anticipate incorporating pose refinement as future

work.

II. RELATED WORK

Complex appearance like reflection and refraction are

not well handled by state-of-the-art SLAM systems [8]–

[10]. Both feature-based and direct methods fail around

Fig. 1: Visual depiction of the keyframes selected for a typical robotic trajectory (Sequence 35 in the LearnLFOdo dataset).

A temporal depiction of selected keyframes is shown at bottom. The proposed adaptive method only incorporates frames

covering regions where the scene is poorly represented, while non-adaptive methods incorporate frames throughout the

trajectory irrespective of scene content. Our approach yields higher-quality representations with less data and compute and

allows robots to operate with full frame rate video and over extended deployments.



view-dependent effects, impacting map fidelity. Neural scene

representations [11], [12] have recently gained traction as

a method of handling visually complex scenes [8], [13]–

[18]. Neural radiance fields in particular [1], [19], [20] have

enabled photorealistic representation of reflection, refraction

and scattering within a scene. In robotics this has enabled

manipulation, localisation, and navigation around visually

complex surfaces [21]–[27].

However key challenges remain in leveraging NeRFs in

robotics. For real-time operation, prior approaches require

depth sensors, or remove the view-dependent portion of

the representation [26], [28], limiting their applicability and

capability. Others incorporate traditional SLAM front-ends to

alleviate some of these constraints [16], however these are

limited by the performance of the front-ends which do not

generally handle view-dependent appearance. While some

approaches to neural odometry address these issues [29],

[30], they are not full mapping solutions, and a complete end-

to-end robotic neural mapping pipeline is yet to be realised.

NeRF works best while operating with sufficient input

imagery [4], [6], [31]–[33], but it becomes computationally

prohibitive as the number of input images grows. This is a

critical issue given the large number of images available to a

mobile robot, and the unbounded nature of images available

where robots operate over extended periods.

In this work we propose a representation-driven keyframe

selection method for a camera-only SLAM pipeline. In

particular, we use the appearance representation of the NeRF

as opposed to geometric innovation [16], [26], [28] by

leveraging the view synthesis capability of the representation.

We select and add frames only to poorly represented regions

of the scene. This allows a robot to curate its input data to

effectively build NeRF-based maps without being impacted

by high input frame rates or long-term accumulation of

frames where sites are revisited over time. We believe this

work is an important step toward achieving online NeRF-

based SLAM.

III. METHOD

We leverage the view synthesis capabilities of a NeRF to

adaptively determine whether new keyframes are required to

represent scene regions. We compare our adaptive approach

to two non-adaptive baselines that employ temporal and

distance based approaches to select new frames. In all

cases, we use a common initialisation method to produce

constrained NeRFs at the beginning of a trajectory.

A. Keyframe Selection

By leveraging the novel view synthesis capabilities of a

NeRF, we develop an adaptive keyframe selection method

which balances data efficiency with visual reconstruction

quality. We denote the current state of the NeRF by its train-

ing dataset Ki and weights ΘKi
. For a new input frame ki+1,

we compare the frame with the NeRF’s prediction of that

frame, computed as peak signal to noise ratio (PSNR). We

add the frame to the training set only when the synthesised

frame fidelity drops below a threshold γ ,

Ki+1 = Ki ∪{ki+1 |PSNR(Ii+1,ΘKi
)< γ}. (1)

In an incremental construction, this leverages the ability

for the NeRF to represent content outside the training set,

adding keyframes only when innovative visual information

is captured. This results in a set of keyframes which pro-

vides a minimal drop in quality of the NeRF while being

substantially more data efficient than distance or time based

approaches to keyframe selection.

Non-Adaptive Keyframe Algorithms We compare with

two naive keyframe selection methods. Firstly, a time-based

method in which a new keyframe is selected after a spec-

ified amount of time γt . This equates to taking every nth

frame assuming a constant camera frame rate. The second

comparison method uses the odometry information available

to robotic platforms. This distance-based approach selects a

new keyframe after a given translation γd of the robot has

occurred. See Fig. 1 for graphical depictions of the frames

selected by each method.

B. Iterative NeRF

Due to our operation on a continuous stream of images

on a robotic platform, our training approach differs from

conventional approaches. After deciding to include an image

in the set of keyframes, we retrain a NeRF with the updated

keyframe set. We do this to avoid the edge effects of

regions of the scene which are seen by few frames, often

characterised by floaters. This minimises special treatment

required to extend the representation which is not a focus of

this work, but is discussed elsewhere [16], [34].

At each step, the adaptive algorithm uses the current NeRF

model to predict the view of the camera. Comparing the

PSNR between the NeRF render and the frame from the

camera allows for an estimation of how well the current

training set captures the current view. If the PSNR is poor,

the frame is included as a new keyframe.

Initialisation A NeRF with few input views is ill-

constrained [4], [6], [32]. We propose a simple solution to

initialise the representation at the beginning of a trajectory.

We train a NeRF on the first i frames, until the i + 1th

frame exceeds our reconstruction threshold γ . We repeat this

process until there are sufficient multi-view constraints on the

NeRF to converge and produce a high fidelity representation.

In this work, we determined that the first i = 10 frames

produced a sensible representation, and applied the proposed

adaptive keyframe selection to each subsequent frame.

IV. EXPERIMENTS

We benchmark our keyframe selection approach on data

captured from a robotic arm, providing ground truth poses.

We iteratively train NeRF map representations, progressively

incorporating new frames from the stream of images obtained

from the robot. We consider both single-pass mapping, in

which a scene is covered once, and persistent operation, in

which a robot repeatedly covers the same parts of a scene

over multiple passes. The latter is representative of long-term



TABLE I: Comparison of keyframe selection algorithms for different sequences in the LearnLFOdo dataset

Method Metrics Seq. 17 Seq. 24 Seq. 33 Seq. 35 Seq. 38 Seq. 41 Avg.

Gold Standard
No. Images 192 358 156 303 338 158 250.8

PSNR (dB) (↑) 27.00 31.38 30.89 29.54 28.32 28.26 29.50
SSIM (↑) 0.856 0.884 0.896 0.859 0.867 0.850 0.869

Temporal

No. Images 44 74 38 64 71 38 54.8
Total time (s) (↓) 1468.03 3173.75 1163.90 2685.23 2872.21 1161.67 2087.46

PSNR (dB) (↑) 25.51 28.6 28.12 27.19 27.13 24.76 27.08
SSIM (↑) 0.806 0.869 0.840 0.820 0.838 0.796 0.828

Distance

No. Images 58 72 28 79 75 64 62.7
Total time (s) (↓) 1663.47 1255.58 907.592 2684.54 2471.47 1662.28 1774.15

PSNR (dB) (↑) 26.02 28.57 25.26 27.55 27.488 25.39 26.88
SSIM (↑) 0.816 0.833 0.801 0.828 0.810 0.824 0.819

Adaptive (Ours)

No. Images 65 42 33 80 53 64 56.2
Total time (s) (↓) 1945.50 1280.67 772.27 2593.03 1611.52 1657.14 1643.35

PSNR (dB) (↑) 26.32 30.2 27.24 27.12 26.98 25.55 27.50

SSIM (↑) 0.829 0.833 0.844 0.836 0.846 0.816 0.834

robotic deployments in which the robot surveys or maintains

a fixed area over an extended duration.

A. Implementation Details

Dataset We use the LearnLFOdo dataset [35] to provide

posed images from a robotic platform. This dataset was cap-

tured using a UR5e robotic arm providing accurate ground

truth pose information and contains 45 separate scenes and

camera trajectories. While the dataset was captured using an

EPIImaging light field camera, only the centre image is taken

so that the camera is effectively monocular.

Architecture and Optimisation As the most tractable

NeRF variant for robotics in terms of training time, we

use InstantNGP [36]. We note, however, that our approach

could be applied to more recent and higher-fidelity NeRF

variants [20], [37]. All models are trained on an NVIDIA

4080, utilising the Adam optimiser and published parameters

from the original InstantNGP paper [36]. We train for 5000

iterations allowing the representation to converge, before

querying for keyframe addition.

Threshold Parameters For the experiments conducted

the threshold values for each of the competing methods

was kept constant for all sequences within the dataset.

To enable a fair comparison of the results, the thresholds

were chosen such that each method selected a similar

TABLE II: Multiple-pass trajectory performance

Method Metrics Seq. 13 Seq. 20 Avg.

Temporal

No. Images 104 134 119
Total time (s) (↓) 3663.89 4694.17 4179.03

PSNR (dB) (↑) 23.38 27.62 26.00
SSIM (↑) 0.777 0.844 0.811

Distance

No. Images 138 187 162.5
Total time (s) (↓) 4936.28 5963.91 5450.10

PSNR (dB) (↑) 24.05 28.46 26.79
SSIM (↑) 0.801 0.855 0.828

Adaptive (Ours)

No. Images 34 51 42.5

Total time (s) (↓) 1044.87 1544.23 1294.55

PSNR (dB) (↑) 24.32 28.51 26.90

SSIM (↑) 0.811 0.862 0.837

number of images across all experiments. We selected an

adaptive reconstruction threshold γ = 24dB, time threshold

γt = 0.183s, corresponding to sampling every 5.5 frames, and

distance threshold γd = 0.25m. The single- and multiple-pass

experiments used the same threshold values.

B. Single-Pass Performance

We evaluated the methods on six single-pass sequences,

with numerical results shown in Tab. I. For each sequence

we show the number of keyframes selected, the total time

taken to complete the incremental reconstruction process, as

well as the reconstruction quality in PSNR and structural

similarity (SSIM). We include comparison to a model trained

using all available input images. Because this is an estimate

and not ground truth data it represents a “gold standard”, i.e.

an upper bound on performance based on the best available

estimate. Note also that this approach is prohibitively slow,

taking hours to run, and is thus incompatible with online

operation.

Comparing our adaptive method to the non-adaptive base-

lines we see that the proposed method is able to select

more informative keyframes which allows it to not only

produce higher quality reconstructions, demonstrated through

higher PSNR and SSIM scores, but it does so with less

computational time. Compared to the gold standard our

method reduces the input frames by 78% while decreasing

PSNR by only 2dB, meaning the quality has not dropped

significantly despite the large decrease in input data and

computation time.

Fig. 1 shows a graphical representation for the keyframes

selected along Seq. 35. Here we see that while the time and

distance baselines show similar sampling density in time and

space, respectively, the proposed adaptive method recognises

when the scene is already well represented and samples more

densely where doing so is more informative. Our approach

adds few frames towards the middle of the trajectory where

the scene is already well described by existing frames in the

training set.
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Fig. 2: Reconstruction quality for different keyframe selection methods, taken from Seq. 41. The rendered images along

with the error in the rendering compared to the captured image. Areas of high discrepancy between methods are outlined

in red.

C. Multiple-Pass Performance

Table II depicts performance for trajectories that revisit

parts of the scene multiple times. This is representative of

an extended deployment in which a robot completes repeated

surveys of an area. The adaptive approach does not add

additional frames after the first pass through the environ-

ment, recognising that the additional information provided

on repeated visits falls below the selected threshold. The

non-adaptive baselines are unaware of scene content and so

continue to add frames even for well-represented parts of the

scene. Compared to the temporal and distance baselines, the

adaptive approach uses just 35.7% and 26.2% of the frames

respectively, while also resulting in a small improvement

to PSNR compared to the naı̈ve approaches. We expect the

benefit of the adaptive approach to grow with the duration

of the deployment.

D. Qualitative Results

In Figure 2 we show a qualitative comparison between

the gold standard approach and the temporal, distance, and

adaptive keyframe selection methods. The figure shows mean

absolute error in pixel intensity compared with measured

frames, for pixel values between 0 and 1.

The figure shows notable improvements in specular re-

gions of the scene like the fruit, which require more views

to successfully constrain, as well as planar Lambertian scene

regions like the checkerboard. By adaptively selecting frames

based on render quality, the proposed method is able to

determine regions which require additional input frames to

refine appearance. Note that this process leverages the view-

dependence of the NeRF, and this would not be possible

by employing only depth information or a Lambertian scene

assumption.

V. CONCLUSIONS

We presented an adaptive technique for selecting NeRF

input frames from a video stream by iteratively constructing

and querying a NeRF model. Our approach maintains model

quality while reducing storage and computation time by

as much as 78% in single-pass mapping, and prevents the

unbounded growth of input frames in persistent mapping. It

outperforms non-adaptive temporal and spatial methods by

delivering greater rendering quality in less time.

This work is a step towards complete NeRF-based robotic

mapping. We envision as future work employing similar

insights to remove outdated frames, or to detect and describe

changes in the environment. We further envision incorporat-

ing pose refinement as part of the integration of new frames

into the model.
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