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Camera Design For Perception Tasks

e The performance of perception tasks is influenced by cameras.

e Designing cameras with high performance is costly, requires human labour and
hardware experiments.

e Most cameras and perception tasks are designed in isolation.

Previous Works

e Fully differentiable task-specific optics optimization. [1]
o Cannot optimize camera's resolution, placement, and unconventional cameras
such as light field and stereo cameras.
e Task-specific camera optimization with Reinforcement Learning. [2]
o Long optimization time.

e In this work, we combine derivative-free and gradient-based optimizers to design
cameras efficiently while supporting continuous, discrete, and categorical
parameters.

e \We additionally develop a camera simulation method including a scene capture
component and a physics-based noise model, and provide a procedurally
generated indoor virtual environment.

Methodology

Camera Simulation
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Camera Simulation

e \We use the Unreal Engine camera to capture scene renders of simulation
environments.

e \We incorporate the affine noise model [3] to introduce noise.

e \/alidation shows our simulation has simular intensity variances and numbers of
extracted ORB features with captured images.

TaCOS: Task-Specific Camera Optimization
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e \We optimize the field of view and the baseline distance for a stereo camera pair
using the CARLA simulator [4].

e \We optimize the stereo camera for depth estimation.
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for optimizing categorical variable that includes interdependent variables.
e Jointly optimizing perception task and camera hardware outperforms isolated
optimization.

e TaCOS designs camera that outperforms off-the-shelf ones.

e TaCOS achieves similar performance with the SOTA method DISeR but with fewer
optimization steps and less time.

e Jointly optimizing task and camera hardware outperforms isolated optimization.
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RealSense D450 ZED 2i e TaCOS is an automatic camera design method that supports continous, discrete,

and categorical camera parameters.

e \We provide a validated camera simulation method and provide a procedurally
generated indoor virtual environment.

e TaCOS can be improved by incorporating an adaptive camera control algorithm

1800

» | for dynamic camera parameters such as auto-exposure.
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