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Stationary Cameras Simplify Things

Classic, simple video processing
● Denoising
● Change detection
● Tracking
● Segmentation
● Temporal filtering

[Chien2002]

[Bennett2005]

[Zhao2002]

Denoising

Change Detection

Tracking
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Stationary Cameras Simplify Things

Denoising

Tracking

But these break
when the camera moves

[Chien2002]

[Bennett2005]

[Zhao2002]

Classic, simple video processing
● Denoising
● Change detection
● Tracking
● Segmentation
● Temporal filtering

1

Change Detection
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The Problem

Moving camera, 3D scene
 → Nonuniform apparent motion

 → Breaks static-camera methods

2
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A Simple Solution?

Fake a stationary camera
 → No apparent motion

 → Static-camera methods work

2
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Fake a stationary camera
 → No apparent motion

 → Static-camera methods work

Not so simple!
● Dense structure from motion
● Iterative optimization, outlier rejection
● Complex behaviours, failure modes
● Complex to implement well

A Simple Solution?

2
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Light Field Imaging: A Quick Tour

Lytro lenslet-based cameras

Stanford camera array

Pelican
Imaging

Linx Imaging (Apple)Raytrix

● New tradeoffs  More light, more depth of field→
● New image geometry  new capabilities, simplifications, robustness→

3
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The Light Field

4D Image ℒ( s, t, u, v )
● A 2D array of 2D images
● A 4D array of pixels
● Pixels map to rays

4
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Light Field Rendering

● Render novel views
● Off-plane
● Different lenses

● No 3D model
● Ray interpolation

5
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Light Field Rendering

[LF c/o Stanford Computer Graphics Laboratory][Dansereau2015]

Planar refocus … volumetric refocus  

6
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Low-Light Imaging / Denoising

[Dansereau2015]
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[Dansereau2004]

Lytro, 2014

Depth Estimation

● 4D gradients map to depths
● Real-time single-camera depth
● RGBD that works great outside

8
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6 motion components

Camera rotation,
 translation

Change over time

Plenoptic Flow: Velocity Estimation

● Generalized optical flow
● Built on 1st differences e.g. Ls=L(s+1)-L(s)
● Decomposes change into 6 components
● Closed-form least squares solution

[Dansereau2011]
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[Dansereau2011]
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● Like a 3D optical mouse
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Plenoptic Flow: Velocity Estimation
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Lx

Ly

Lz

L!y

L!x

L!z

L

Plenoptic Flow: Additive Rendering
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Lx

Ly

Lz

L!y
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L!z

+kLzL

Plenoptic Flow: Additive Rendering
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A Simple Solution After All?

12

Estimate camera motion : Closed-form
Render new view : Closed-form              

Simple conversion to static camera
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Estimate camera motion : Closed-form
Render new view : Closed-form              

Simple conversion to static camera

● No 3D model
● Closed-form, constant runtime
● Simple behaviours, failure modes
● Easy to implement in parallel HW

● FPGA, GPU, etc.

A Simple Solution After All?

12
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Demo: Change Detection

[Sheikh2009]

[Chien2002]

Fixed Camera
Simple, robust
Parallel

Moving Camera

Computationally, behaviourally complex
Iterative, nonlinear
Sparse or constrained

13
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Demo: Change Detection

Estimate camera motion
(closed-form least-squares)

14

→
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Demo: Change Detection

→
Estimate camera motion
(closed-form least-squares)

Change due to camera motion

14
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Demo: Change Detection

Estimate camera motion
(closed-form least-squares)

Change due to camera motion

Render static camera view

14

→
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Demo: Change Detection

Estimate camera motion
(closed-form least-squares)

Change due to camera motion

Render static camera view

Pixel differencing

14

→
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Demo: Change Detection

Estimate camera motion
(closed-form least-squares)

Change due to camera motion

Render static camera view

Pixel differencing

Simplifies to plenoptic residual

14

→
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Rejection of Apparent Motion

15

Input
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Rejection of Apparent Motion

15

Input
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Rejection of Apparent Motion

15

Naive – note apparent motion
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Rejection of Apparent Motion

15

Plenoptic residual
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Rejection of Apparent Motion

16

Input
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Rejection of Apparent Motion

16

Input
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Rejection of Apparent Motion

16

Naive – note apparent motion
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Rejection of Apparent Motion

16

Plenoptic residual
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Rejection of Apparent Motion

17
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vs. Structure from Motion

18

Stereo as stand-in for SfM
● Similar characteristics
● Simplified subset
● Upper bound on performance

DisparityStereo 
Matching

Reproject -
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vs. Structure from Motion

Scene motion aligned with 
camera motion

19

Input
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vs. Structure from Motion

Scene motion aligned with 
camera motion

19

Input
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vs. Structure from Motion

Scene motion aligned with 
camera motion

SfM confuses motion for 
depth

19

Disparity
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vs. Structure from Motion

Scene motion aligned with 
camera motion

SfM confuses motion for 
depth

Actual change

19
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vs. Structure from Motion

Scene motion aligned with 
camera motion

SfM confuses motion for 
depth

SfM-based change estimate

19

Poor change detection
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vs. Structure from Motion

Static camera
Naive = true

Stereo = stand-in SfM

16/32 = max disparity

Control: vertical motion
All perform well

20
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vs. Structure from Motion

Static camera

Naive = true
Stereo = stand-in SfM

16/32 = max disparity

Translation in x

Poor SfM performance

21
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Maximum Camera Motion

False / true positive ratio
Lower = better

Tradeoff:
Sensitivity (BW)

Max camera motion

Limitation: small camera motions

22
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● Simplified change detection for moving cameras

● Closed-form, simple, parallel

● Outperforms monocular SfM for common scenes

● Limited camera motion, tradeoff with sensitivity

● Framework to simplify other problems

● Moving camera  Virtual static camera→

Conclusions

23
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What's Next?

● Other still-camera solutions
● Object tracking, segmentation, 

isolation and removal, denoising, 
velocity & temporal filtering

● Better imaging
● Custom cameras, hybrids

● Simplify difficult tasks
● 4D algorithms, sensor fusion

24
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Load Gantry and Lytro imagery 

Calibrate and rectify Lytro imagery 

Linear depth, volume filters 

Denoising: low-light, fog, dust, murky water 

Occluder removal: rain, snow, silty water

Light Field Toolbox for MATLAB
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Environment

Challenges in Robotic Vision

● Variable light: Day & night
● Weather
● Participating media
● Unstructured, dynamic scenes
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Challenges in Robotic Vision

● Power, computing
● Weight, volume
● Actuation
● Time

Platform
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Challenges in Robotic Vision

Camera

● Light vs. depth of field
● Light vs. motion blur
● Nonunifom apparent motion
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Maximum Camera Motion

False / true positive ratio
Lower = better

Tradeoff:
Sensitivity (BW)

Max camera motion

Limitation: small camera motions, static scene
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Maximum Scene Motion

Static camera

Naive = true

● Small motions
● Random, incoherent
● Good performance

Limitation: what if the whole scene is moving?

22
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Maximum Scene Motion

Static camera
Naive = true

● Small motions
● Coherent, appears as 

apparent motion
● Poor performance

Limitation: what if the whole scene is moving?

23



ARC Centre of Excellence for Robotic Visionwww.roboticvision.org

Maximum Scene Motion

Static camera

Naive = true

Simulation to find worst 
performance:
● Small motion
● Across whole image
● Coherent, appears as 

apparent motion

Limitation: what if the whole scene is moving?

24
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vs. Structure from Motion

Static camera
Naive = true

Stereo = stand-in SfM

16/32 = max disparity

Rotation about vertical
Poor SfM performance

20
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vs. Structure from Motion

Static camera

Naive = true
Stereo = stand-in SfM

16/32 = max disparity

Translation in x,z

Poor SfM performance

20
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Stationary Cameras Simplify Things

Classic, simple video processing
● Denoising
● Change detection
● Tracking
● Segmentation
● Temporal filtering

[Chien2002]

[Bennett2005]

[Zhao2002]

Denoising

Change Detection

Tracking

1
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Stationary Cameras Simplify Things

Denoising

Tracking

But these break
when the camera moves

[Chien2002]

[Bennett2005]

[Zhao2002]

Classic, simple video processing
● Denoising
● Change detection
● Tracking
● Segmentation
● Temporal filtering

1

Change Detection
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The Problem

Moving camera, 3D scene

 → Nonuniform apparent motion

 → Breaks static-camera methods

2

The camera moves between t0, t1
Causes apparent motion, e.g. the tree
This breaks simple methods
e.g. makes it hard to distinguish genuine motion from 

apparent motion
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A Simple Solution?

Fake a stationary camera

 → No apparent motion
 → Static-camera methods work

2

Render a virtual stationary camera
The camera at t0 is replaced with a virtual camera 

aligned with the one at t1



  

 

ARC Centre of Excellence for Robotic Visionwww.roboticvision.org

Fake a stationary camera

 → No apparent motion
 → Static-camera methods work

Not so simple!
● Dense structure from motion
● Iterative optimization, outlier rejection
● Complex behaviours, failure modes
● Complex to implement well

A Simple Solution?

2

Setting up a need for LF cams here
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Light Field Imaging: A Quick Tour

Lytro lenslet-based cameras

Stanford camera array

Pelican
Imaging

Linx Imaging (Apple)Raytrix

● New tradeoffs  More light, more depth of field→
● New image geometry  new capabilities, simplifications, robustness→

3

All LF cams measure the same form of information as 
the big array on the left

More practical form factors are increasingly available
Pelican imaging and Linx are italicized because you 

can't buy them yet
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The Light Field

4D Image ℒ( s, t, u, v )
● A 2D array of 2D images
● A 4D array of pixels
● Pixels map to rays

4

A camera array measures an array of images
To pick a pixel from this 2D array of 2D images we 

need 4 numbers:
2 for the camera (s,t)
2 for the pixel (u,v)
This can be seen as a 4D array of pixels
Each pixel maps to a unique ray in the scene, 

following the two-plane parameterization on the left
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Light Field Rendering

● Render novel views
● Off-plane
● Different lenses

● No 3D model
● Ray interpolation

5

The next few slides should go quickly…
Rendering novel views is simple, with no explicit 

modelling required
Views can be off the plane of the camera
Views can have different optical properties from the 

camera that measured the light field, e.g. refocus
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Light Field Rendering

[LF c/o Stanford Computer Graphics Laboratory][Dansereau2015]

Planar refocus … volumetric refocus  

6

An example of refocus, including a type not easily 
achieved with normal cameras
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Low-Light Imaging / Denoising

[Dansereau2015]

7

Very fast application: denoising / imaging in low light 
or through fog or murky water 
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[Dansereau2004]

Lytro, 2014

Depth Estimation

● 4D gradients map to depths
● Real-time single-camera depth
● RGBD that works great outside

8

Fast app: depth information is implicitly captured by 
the light field

Depth estimation can be simple, real-time
Currently runs in real-time on Lytro Illum cameras
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6 motion components

Camera rotation,
 translation

Change over time

Plenoptic Flow: Velocity Estimation

● Generalized optical flow
● Built on 1st differences e.g. Ls=L(s+1)-L(s)
● Decomposes change into 6 components
● Closed-form least squares solution

[Dansereau2011]

9

Plenoptic flow in detail
Point out the high level (coloured boxes) and 

that there are 6 components that we can 
visualize (next slide)

Point out that the whole this is a classic 
overdetermined linear system of equations

The 1st differences are a bit of a cheat, there's 
an extra step not shown, to get from the 
sampled LF to continuous-space quantities

Closed-form least squares solution
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[Dansereau2011]
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● Like a 3D optical mouse

10

Plenoptic Flow: Velocity Estimation

Closed-form visual odometry isn't usually possible
Result shown is rendered video from real AUV 

trajectory
Shows plenoptic keeping up with, indeed 

outperforming leading features + RANSAC method 
of the time
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Lx

Ly

Lz

L!y

L!x

L!z

L

Plenoptic Flow: Additive Rendering

11

Visualizing the 6 components from the 
previous slide;

Lx for example is the result of moving the 
camera to the right

Lwy is rotation about y
To test if these are correct we can add them 

back to the light field
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Lx

Ly

Lz

L!y

L!x

L!z

+kLzL

Plenoptic Flow: Additive Rendering

11

So this is a very simple way of rendering 
under small changes

We'll use this to further simplify change 
detection in the coming example
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A Simple Solution After All?

12

Estimate camera motion : Closed-form

Render new view : Closed-form              

Simple conversion to static camera

Perhaps with this bag of tricks, LF cams can make 
our solution a simple one after all

Visual odometry via plenoptic flow is closed-form
Rendering is simple, should be achievable very fast, 

even closed-form
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Estimate camera motion : Closed-form

Render new view : Closed-form              

Simple conversion to static camera

● No 3D model
● Closed-form, constant runtime
● Simple behaviours, failure modes
● Easy to implement in parallel HW

● FPGA, GPU, etc.

A Simple Solution After All?

12

Contrasting against the earlier setup of complex SfM 
solutions
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Demo: Change Detection

[Sheikh2009]

[Chien2002]

Fixed Camera

Simple, robust

Parallel

Moving Camera

Computationally, behaviourally complex
Iterative, nonlinear

Sparse or constrained

13

Let's show off the method with a specific example
Again contrasting the simple, still-camera method 

with what's necessary using current state-of-the-art 
techniques for change detection

Sparse as in not all pixels are assigned estimates
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Demo: Change Detection

Estimate camera motion

(closed-form least-squares)

14

→

Math time
It should go fast

We estimate the camera's velocity using plenoptic 
flow
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Demo: Change Detection

→
Estimate camera motion

(closed-form least-squares)

Change due to camera motion

14

This velocity yields an estimated change due to the 
camera's motion
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Demo: Change Detection

Estimate camera motion

(closed-form least-squares)

Change due to camera motion

Render static camera view

14

→

Adding this estimated change to the LF yields a novel 
view

This is the still camera we were looking for
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Demo: Change Detection

Estimate camera motion

(closed-form least-squares)

Change due to camera motion

Render static camera view

Pixel differencing

14

→

This is the first change detection-specific step
Simple pixel differencing
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Demo: Change Detection

Estimate camera motion

(closed-form least-squares)

Change due to camera motion

Render static camera view

Pixel differencing

Simplifies to plenoptic residual

14

→

Remember Lt=L(t1)-L(t0)
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Rejection of Apparent Motion

15

Input

Results, should go fast
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Rejection of Apparent Motion

15

Input

Flip back and forth a few times
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Rejection of Apparent Motion

15

Naive – note apparent motion
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Rejection of Apparent Motion

15

Plenoptic residual

Flipping is helpful
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Rejection of Apparent Motion

16

Input
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Rejection of Apparent Motion

16

Input
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Rejection of Apparent Motion

16

Naive – note apparent motion
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Rejection of Apparent Motion

16

Plenoptic residual
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Rejection of Apparent Motion

17

Comparing naive pixel differencing Lt to the proposed 
method

Lt is susceptible to apparent motion
The mean ratio of 4 shows our method rejects 

apparent motion
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vs. Structure from Motion

18

Stereo as stand-in for SfM
● Similar characteristics
● Simplified subset
● Upper bound on performance

DisparityStereo 
Matching

Reproject -

This isn't mentioned in the abstract
Let's compare with an SfM approach

SfM is used to align two views, and the error taken to 
effect change detection

What if the motion is parallel with camera motion?
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vs. Structure from Motion

Scene motion aligned with 
camera motion

19

Input

This isn't mentioned in the abstract
Let's compare with an SfM approach

SfM is used to align two views, and the error taken to 
effect change detection

What if the motion is parallel with camera motion?
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vs. Structure from Motion

Scene motion aligned with 
camera motion

19

Input

This isn't mentioned in the abstract
Let's compare with an SfM approach

SfM is used to align two views, and the error taken to 
effect change detection

What if the motion is parallel with camera motion?
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vs. Structure from Motion

Scene motion aligned with 
camera motion

SfM confuses motion for 
depth

19

Disparity

SfM confuses the motion for depth  – disparity should 
not be so high around the box

Here stereo is standing in for SfM.

Because it's doing the same thing with fewer 
unknowns, stereo should represent an upper bound 
on SfM's performance
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vs. Structure from Motion

Scene motion aligned with 
camera motion

SfM confuses motion for 
depth

Actual change

19

Ground truth = temporal derivative
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vs. Structure from Motion

Scene motion aligned with 
camera motion

SfM confuses motion for 
depth

SfM-based change estimate

19

Poor change detection

SfM (stereo) change estimate is poor (should look 
like temporal derivative, note massive hole in 
middle)
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vs. Structure from Motion

Static camera
Naive = true

Stereo = stand-in SfM

16/32 = max disparity

Control: vertical motion

All perform well

20

Quantifying the SfM breakdown, this is a control to 
show that it works when motion isn't aligned with 
camera motion
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vs. Structure from Motion

Static camera
Naive = true

Stereo = stand-in SfM
16/32 = max disparity

Translation in x

Poor SfM performance

21

Motion here is parallel with camera motion, making 
the SfM method suffer

The shift in performance for stereo16 is where motion 
exceeded 16 pixels, saturating the disparity 
estimate
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Maximum Camera Motion

False / true positive ratio

Lower = better

Tradeoff:

Sensitivity (BW)

Max camera motion

Limitation: small camera motions

22

Common question is how small camera motion has to 
be.  This answers it.

BW is the input bandwidth: a smoothing filter is used 
to increase coherence, but eventually this makes 
things less sensitive to change

This result is for a dynamic scene, with hand-labelled 
ground truth

If you turn the bandwidth too low, you lose sensitivity 
to changes (right side of the plot)
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● Simplified change detection for moving cameras

● Closed-form, simple, parallel

● Outperforms monocular SfM for common scenes

● Limited camera motion, tradeoff with sensitivity

● Framework to simplify other problems

● Moving camera  Virtual static camera→

Conclusions

23
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What's Next?

● Other still-camera solutions
● Object tracking, segmentation, 

isolation and removal, denoising, 
velocity & temporal filtering

● Better imaging
● Custom cameras, hybrids

● Simplify difficult tasks
● 4D algorithms, sensor fusion

24
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Load Gantry and Lytro imagery 

Calibrate and rectify Lytro imagery 

Linear depth, volume filters 

Denoising: low-light, fog, dust, murky water 

Occluder removal: rain, snow, silty water

Light Field Toolbox for MATLAB
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Environment

Challenges in Robotic Vision

● Variable light: Day & night
● Weather
● Participating media
● Unstructured, dynamic scenes
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Challenges in Robotic Vision

● Power, computing
● Weight, volume
● Actuation
● Time

Platform



  

 

ARC Centre of Excellence for Robotic Visionwww.roboticvision.org

Challenges in Robotic Vision

Camera

● Light vs. depth of field
● Light vs. motion blur
● Nonunifom apparent motion
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Maximum Camera Motion

False / true positive ratio

Lower = better

Tradeoff:

Sensitivity (BW)

Max camera motion

Limitation: small camera motions, static scene
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Maximum Scene Motion

Static camera

Naive = true

● Small motions
● Random, incoherent
● Good performance

Limitation: what if the whole scene is moving?

22
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Maximum Scene Motion

Static camera

Naive = true

● Small motions
● Coherent, appears as 

apparent motion
● Poor performance

Limitation: what if the whole scene is moving?

23
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Maximum Scene Motion

Static camera

Naive = true

Simulation to find worst 
performance:
● Small motion
● Across whole image
● Coherent, appears as 

apparent motion

Limitation: what if the whole scene is moving?

24
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vs. Structure from Motion

Static camera
Naive = true

Stereo = stand-in SfM

16/32 = max disparity

Rotation about vertical

Poor SfM performance

20

Here motion is parallel with camera motion, so the 
stereo methods suffer



  

 

ARC Centre of Excellence for Robotic Visionwww.roboticvision.org

vs. Structure from Motion

Static camera
Naive = true

Stereo = stand-in SfM
16/32 = max disparity

Translation in x,z

Poor SfM performance

20

The shift in performance is where motion exceeded 
16 pixels, saturating stereo16's disparity estimate


